997 resultados para 278


Relevância:

10.00% 10.00%

Publicador:

Resumo:

DatabaseStructural data are available in the Protein Data Bank under the accession numbers 3PVF, 3PY2, and 3PWA. Structured digital abstract Tim binds to Tim by x-ray crystallography (View interaction).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron Diffraction Structure Analysis (EDSA) with data from standard selected-area electron diffraction (SAED) is still the method of choice for structure determination of nano-sized single crystals. The recently determined heavy atom structure α-Ti2Se (Albe & Weirich, 2003) is used as an example to illustrate the developed procedure for structure determination from two-dimensionally SAED data via direct methods and kinematical least-squares refinement. Despite the investigated crystallite had a relatively large effective thickness of about 230 Å as determined from dynamical calculations, the obtained structural model from SAED data was found in good agreement with the result from an earlier single crystal X-ray study (Weirich, Pöttgen & Simon, 1996). Arguments, which support the validity of the used quasi-kinematical approach, are given in the text. The influences of dynamical and secondary scattering on the quality of the data and the structure solution are discussed. Moreover, the usefulness of first-principles calculations for verifying the results from EDSA is demonstrated by two examples, whereas one of the structures was unattainable by conventional X-ray diffraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure, thermal expansion and electrical conductivity of the solid solution Nd0.7Sr0.3Fe1-xCoxO3 for 0 less than or equal to x less than or equal to 0.8 were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction (XRPD). The pseudo-cubic lattice constant decreased continuously with x. The average linear thermal expansion coefficient (TEC) in the temperature range from 573 to 973 K was found to increase with x. The thermal expansion curves for all values of x displayed rapid increase in slope at high temperatures. The electrical conductivity increased with x for the entire temperature range of measurement. The calculated activation energy values indicate that electrical conduction takes place primarily by the small polaron hopping mechanism. The charge compensation for the divalent ion on the A-site is provided by the formation of Fe4+ ions on the B-site (in preference to Co4+ ions) and vacancies on the oxygen sublattice for low values of x. The large increase in the conductivity with x in the range from 0.6 to 0.8 is attributed to the substitution of Fe4+ ions by Co4+ ions. The Fe site has a lower small polaron site energy than Co and hence behaves like a carrier trap, thereby drastically reducing the conductivity. The non-linear behaviour in the dependence of log sigmaT with reciprocal temperature can be attributed to the generation of additional charge carriers with increasing temperature by the charge disproportionation of Co3+ ions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrasonic degradation of poly(vinyl acetate) was carried out in six different solvents and two mixtures of solvents. The evolution of molecular weight distribution (MWD) with time was determined with gel permeation chromatography. The observed MWDs were analyzed by continuous distribution kinetics. A stoichiometric kernel that accounts for preferential mid-point breakage of the polymer chains was used. The degradation rate coefficient of the polymer in each solvent was determined from the model. The variations of rate coefficients were correlated with vapor pressure of the solvent, the Flory–Huggins polymer–solvent interaction parameter and the kinematic viscosity of the solution. A lower saturation vapor pressure resulted in higher degradation rates of the polymer. The degradation rate increased with increasing kinematic viscosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolism of D-amino acids is of considerable interest due to their key importance in cell structure and function. Salmonella typhimurium D-serine deaminase (StDSD) is a pyridoxal 5' phosphate (PLP) dependent enzyme that catalyses degradation of D-Ser to pyruvate and ammonia. The first crystal structure of D-serine deaminase described here reveals a typical Foldtype II or tryptophan synthase beta subunit fold of PLP-dependent enzymes. Although holoenzyme was used for crystallization of both wild-type StDSD (WtDSD) and selenomethionine labelled StDSD (SeMetDSD), significant electron density was not observed for the cofactor, indicating that the enzyme has a low affinity for the cofactor under crystallization conditions. Interestingly, unexpected conformational differences were observed between the two structures. The WtDSD was in an open conformation while SeMetDSD, crystallized in the presence of isoserine, was in a closed conformation suggesting that the enzyme is likely to undergo conformational changes upon binding of substrate as observed in other Foldtype II PLP-dependent enzymes. Electron density corresponding to a plausible sodium ion was found near the active site of the closed but not in the open state of the enzyme. Examination of the active site and substrate modelling suggests that Thr166 may be involved in abstraction of proton from the C alpha atom of the substrate. Apart from the physiological reaction, StDSD catalyses a, b elimination of D-Thr, D-Allothr and L-Ser to the corresponding alpha-keto acids and ammonia. The structure of StDSD provides a molecular framework necessary for understanding differences in the rate of reaction with these substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of DNA architectural proteins containing two functional domains derived from two different architectural proteins is an interesting emerging research theme in the field of nucleoid structure and function. Mycobacterium tuberculosis HupB, unlike Escherichia coli HU, is a two-domain protein that, in the N-terminal region, shows broad sequence homology with bacterial HU. The long C-terminal extension, on the other hand, contains seven PAKK/KAAK motifs, which are characteristic of the histone H1/H5 family of proteins. In this article, we describe several aspects of HupB function, in comparison with its truncated derivatives lacking either the C-terminus or N-terminus. We found that HupB binds a variety of DNA repair and replication intermediates with K(d) values in the nanomolar range. By contrast, the N-terminal fragment of M. tuberculosis HupB (HupB(MtbN)) showed diminished DNA-binding activity, with K(d) values in the micromolar range, and the C-terminal domain was completely devoid of DNA-binding activity. Unlike HupB(MtbN), HupB was able to constrain DNA in negative supercoils and introduce negative superhelical turns into relaxed DNA. Similarly, HupB exerted a robust inhibitory effect on DNA strand exchange promoted by cognate and noncognate RecA proteins, whereas HupB(MtbN), even at a 50-fold molar excess, had no inhibitory effect. Considered together, these results suggest that synergy between the N-terminal and C-terminal domains of HupB is essential for its DNA-binding ability, and to modulate the topological features of DNA, which has implications for processes such as DNA compaction, gene regulation, homologous recombination, and DNA repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin-angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356-1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 angstrom resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein-selenolate interaction. These new structures of tACE-SeCap and AnCE-SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An advanced design of the solid-state cell incorporating a buffer electrode has been developed for high temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The application of the novel design and its advantages have been demonstrated by measuring the standard Gibbs energies of formation of ternary oxides of the system Sm–Pd–O. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sm–Pd–O were investigated at 1273 K. The two ternary oxides, Sm4PdO7 and Sm2Pd2O5, compositions of which fall on the Sm2O3–PdO join, were found to coexist with pure metal Pd. The thermodynamic properties of the ternary oxides were measured using three-phase electrodes in the temperature range 950–1425 K. During electrochemical measurements a third ternary oxide, Sm2PdO4, was found to be stable at low temperature. The standard Gibbs energies of formation (Δf(ox)Go) of the compounds from their component binary oxides Sm2O3 and PdO, can be represented by the equations: Sm4PdO7: Δf(ox)Go (J mol−1)=−34,220+0.84T(K) (±280); Sm2PdO4: Δf(ox)Go (J mol−1)=−33,350+2.49T(K) (±230); Sm2Pd2O5: Δf(ox)Go (J mol−1)=−59,955+1.80T(K) (±320). Based on the thermodynamic information, three-dimensional P–T–C and chemical potential diagrams for the system Sm–Pd–O were developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we explore a novel idea of using high dynamic range (HDR) technology for uncertainty visualization. We focus on scalar volumetric data sets where every data point is associated with scalar uncertainty. We design a transfer function that maps each data point to a color in HDR space. The luminance component of the color is exploited to capture uncertainty. We modify existing tone mapping techniques and suitably integrate them with volume ray casting to obtain a low dynamic range (LDR) image. The resulting image is displayed on a conventional 8-bits-per-channel display device. The usage of HDR mapping reveals fine details in uncertainty distribution and enables the users to interactively study the data in the context of corresponding uncertainty information. We demonstrate the utility of our method and evaluate the results using data sets from ocean modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guided by the recent observational result that the meridional circulation of the Sun becomes weaker at the time of the sunspot maximum, we have included a parametric quenching of the meridional circulation in solar dynamo models such that the meridional circulation becomes weaker when the magnetic field at the base of the convection zone is stronger. We find that a flux transport solar dynamo tends to become unstable on including this quenching of meridional circulation if the diffusivity in the convection zone is less than about 2x10(11) cm(2) s(-1). The quenching of alpha, however, has a stabilizing effect and it is possible to stabilize a dynamo with low diffusivity with sufficiently strong alpha-quenching. For dynamo models with high diffusivity, the quenching of meridional circulation does not produce a large effect and the dynamo remains stable. We present a solar-like solution from a dynamo model with diffusivity 2.8x10(12) cm(2) s(-1) in which the quenching of meridional circulation makes the meridional circulation vary periodically with solar cycle as observed and does not have any other significant effect on the dynamo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. (C) 2013 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free-standing Pt-aluminide (PtAl) bond coats exhibit a linear stress strain response under tensile loading and undergo brittle cleavage fracture at temperatures below the brittle-to-ductile transition temperature (BDTT). Above the BDTT, these coatings show yielding and fail in a ductile manner. In this paper, the various micromechanisms affecting the tensile fracture stress (FS) below the BDTT and yield strength (YS) above the BDTT in a PtAl bond coat have been ascertained and quantified at various temperatures. The micromechanisms have been identified by carrying out microtensile testing of stand-alone PtAl coating specimens containing different levels of Pt at temperatures between room temperature and 1100 degrees C and correlation of the corresponding fracture mechanisms with the deformation substructure in the coating. An important aspect of the influence of Pt on the tensile behavior, slip characteristics, FS/YS and BDTT in the PtAl coating has also been examined. The addition of Pt enhances the FS of the coating by Pt solid solution strengthening and imparts a concomitant increase in fracture toughness and yet causes a significant increase in the BDTT of the coating. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low cycle fatigue behavior of an O+B2 alloy was evaluated at 650 degrees C in ambient atmosphere under fully reversed total axial strain controlled mode. Three different microstructures, namely equiaxed O plus aged B2 (fine O plates in B2 matrix), lenticular O laths plus aged B2 and a pancake composite microstructure comprising equiaxed alpha 2, lenticular O and aged B2, were selected to study the effect of microstructure on low cycle fatigue behavior in this class of alloys. Distinct well-defined trends were observed in the cyclic stress-strain response curves depending on the microstructure. The cyclic stress response was examined in terms of softening or hardening and correlated with microstructural features and dislocation behavior. Fatigue life was analyzed in terms of standard Coffin-Manson and Basquin plots and for all microstructures a prevailing elastic strain regime was identified, with a single slope for microstructures equiaxed and composite and a double slope for lenticular O laths. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a 2D square Bravais lattice, and a 2D triangular lattice with microcrack demonstrate the accuracy and the robustness of the method. In addition, under certain conditions, this method can simulate complex dynamics of crystalline solids involving different spatial and/or temporal scales with sufficient accuracy and efficiency. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Computational Analysis of Novel Drug Opportunities (CANDO) platform (http://protinfo.org/cando) uses similarity of compound-proteome interaction signatures to infer homology of compound/drug behavior. We constructed interaction signatures for 3733 human ingestible compounds covering 48,278 protein structures mapping to 2030 indications based on basic science methodologies to predict and analyze protein structure, function, and interactions developed by us and others. Our signature comparison and ranking approach yielded benchmarking accuracies of 12-25% for 1439 indications with at least two approved compounds. We prospectively validated 49/82 `high value' predictions from nine studies covering seven indications, with comparable or better activity to existing drugs, which serve as novel repurposed therapeutics. Our approach may be generalized to compounds beyond those approved by the FDA, and can also consider mutations in protein structures to enable personalization. Our platform provides a holistic multiscale modeling framework of complex atomic, molecular, and physiological systems with broader applications in medicine and engineering.