993 resultados para 12-114


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-term spectral analysis was carried out on geochemical logging data from ODP Site 704. The FFT was used to compute the amplitude spectra of short-term overlapping segments to produce depth-period-amplitude spectrograms of the logging data. The spectrograms provided a means of evaluating the significance of the observed periodic components. The periodic components that were consistently present and prominent across a given record interval were considered to be significant. Changes in the spectrogram characteristics seem to reflect changes in either lithology, sedimentation rates, or hiatuses and may therefore provide useful information to aid in stratigraphic and paleoenvironmental studies. The dominant periodicity during the late Pleistocene and Brunhes Chron (0.97 to 0.47 Ma) was determined to be > 100,000 yr whereas the upper Matuyama Chron was dominated by the 41,000-yr periodicity. These periodicities suggest that the sedimentation patterns within the upper Matuyama Chron (0.98-1.78 Ma) were influenced by the Milankovitch obliquity cycle and those within the latest Matuyama-Brunhes Chron (<0.98 Ma) by the eccentricity cycle. The Brunhes/Matuyama boundary therefore represents a major discontinuity. Periodicities observed within the lower Matuyama and the upper Gauss Chron did not correlate with any of the periodicities within the Milankovitch frequency bands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oldest Cretaceous sediments in the subantarctic region were recovered from ODP Hole 700B in the East Georgia Basin. Planktonic foraminifers from the deepest indurated limestones could be attributed to the Marginotruncana schneegansi Zone of late Turonian age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore-water samples were recovered at five sites from ODP Leg 114 in the subantarctic South Atlantic Ocean and analyzed for pH, alkalinity, chloride, sulfate, fluoride, silica, magnesium, calcium, strontium, potassium, lithium, and barium. At sites in the East Georgia Basin and on the Islas Orcadas Rise, Ca increases and Mg decreases linearly downhole with a DeltaMg/DeltaCa ratio reflecting conservative diffusive exchange and basalt basement reactions. At sites on the west flank of the Mid-Atlantic Ridge and on the Meteor Rise, Ca gradients are nonlinear, and nonconservative DeltaMg/DeltaCa ratios reflect alteration reactions of abundant silicic volcanic ash in the sediment. K decreases linearly downhole at all sites, reflecting uptake by basement and the absence of significant sediment-hosted reactions. SO4 decreases and alkalinity increases downhole are due to a slight sulfate reduction at all sites except at Site 701. Sr increases downhole at all sites except Site 701, with DeltaSr/DeltaCa ratios reflecting diffusive exchange with basement. At Site 704 on the Meteor Rise, there is intense Sr production during carbonate recrystallization in the upper 200 mbsf. Below 200 mbsf at Site 704, the ion concentration product of SrSO4 is constant, suggesting Sr control by celestite solubility. Li and F concentrations display complex behavior related to sedimentary reactions, probably calcite recrystallization (Li uptake and F release).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter discusses the formation and distribution of some metals in ocean-floor manganese nodules in the light of the observed data in the literature and thermodynamic and kinetic considerations of the oxidation of metal ions in the oceanic environment. There are, in general, two major schools of thought on the mechanism of incorporation of the minor elements such as nickel, copper, and cobalt with the major elements such as manganese and iron. One is the lattice substitution mechanism and the other the adsorption mechanism. If the mechanism is lattice substitution, extraction of the metal ions is not possible unless the lattice of the major elements is first broken and exchanged with other ions from the bulk solution. Consequently, the leaching behavior of minor elements should display a very close relationship with that of major elements.