953 resultados para ângulo articular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) provide an important source of pluripotent cells for musculoskeletal tissue repair. This study examined the impact of MSC implantation on cartilage healing characteristics in a large animal model. Twelve full-thickness 15-mm cartilage lesions in the femoropatellar articulations of six young mature horses were repaired by injection of a self-polymerizing autogenous fibrin vehicle containing mesenchymal stem cells, or autogenous fibrin alone in control joints. Arthroscopic second look and defect biopsy was obtained at 30 days, and all animals were euthanized 8 months after repair. Cartilage repair tissue and surrounding cartilage were assessed by histology, histochemistry, collagen type I and type II immunohistochemistry, collagen type II in situ hybridization, and matrix biochemical assays. Arthroscopic scores for MSC-implanted defects were significantly improved at the 30-day arthroscopic assessment. Biopsy showed MSC-implanted defects contained increased fibrous tissue with several defects containing predominantly type II collagen. Long-term assessment revealed repair tissue filled grafted and control lesions at 8 months, with no significant difference between stem cell-treated and control defects. Collagen type II and proteoglycan content in MSC-implanted and control defects were similar. Mesenchymal stem cell grafts improved the early healing response, but did not significantly enhance the long-term histologic appearance or biochemical composition of full-thickness cartilage lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: A previous study of radiofrequency neurotomy of the articular branches of the obturator nerve for hip joint pain produced modest results. Based on an anatomical and radiological study, we sought to define a potentially more effective radiofrequency method. DESIGN: Ten cadavers were studied, four of them bilaterally. The obturator nerve and its articular branches were marked by wires. Their radiological relationship to the bone structures on fluoroscopy was imaged and analyzed. A magnetic resonance imaging (MRI) study was undertaken on 20 patients to determine the structures that would be encountered by the radiofrequency electrode during different possible percutaneous approaches. RESULTS: The articular branches of the obturator nerve vary in location over a wide area. The previously described method of denervating the hip joint did not take this variation into account. Moreover, it approached the nerves perpendicularly. Because optimal coagulation requires electrodes to lie parallel to the nerves, a perpendicular approach probably produced only a minimal lesion. In addition, MRI demonstrated that a perpendicular approach is likely to puncture femoral vessels. Vessel puncture can be avoided if an oblique pass is used. Such an approach minimizes the angle between the target nerves and the electrode, and increases the likelihood of the nerve being captured by the lesion made. Multiple lesions need to be made in order to accommodate the variability in location of the articular nerves. CONCLUSIONS: The method that we described has the potential to produce complete and reliable nerve coagulation. Moreover, it minimizes the risk of penetrating the great vessels. The efficacy of this approach should be tested in clinical trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: 5-Aminolevulinic acid based photodynamic therapy (5-ALA-PDT) has revealed promising results in the treatment of inflammatory joint diseases due to the sensitivity of inflamed synovial tissue. For 5-ALA-PDT to be safe and beneficial for intra-articular applications, resistance of chondrocytes is essential to prevent cartilage damage. As no data yet exist, the aim of the present study was to assess in vitro the response of the chondrocytes to 5-ALA-PDT and to compare with osteoblasts and synovial tissue derived cells. METHODS: Bovine articular chondrocytes, osteoblasts, and synovial cells were subjected to 5-ALA-PDT in cell culture. The PpIX accumulation and the function of the cells were assessed for up to 12 days. RESULTS: Bovine chondrocytes showed lower PpIX fluorescence upon incubation with 5-ALA (0.0-2.0 mM) for 4 hours as compared to osteoblasts and synovial cells suggesting a low PpIX accumulation. After incubation with 0.5 mM 5-ALA and application of light at a dose of 20 J/cm2, chondrocytes were functionally not affected (collagen type II and aggrecan mRNA, glycosaminoglycan synthesis) whereas a decrease in the proportion of viable cells was observed in osteoblasts and synovial cells (2+/-2% and 14+/-8%, respectively; chondrocytes 91+/-13%). Chondrocytes showed a 58% reduction of 5-ALA uptake using [3H]5-ALA as compared to osteoblasts and a lower mitochondrial content as assessed by the activity of the mitochondrial marker enzyme citrate synthase (9.2+/- 3.6 mU/mg protein) than osteoblasts (32.6+/-10.5 mU/mg) and synovial cells (60.0+/-10.8 mU/mg). The reduced uptake of 5-ALA and/or the low mitochondrial content, an adaptation to their in vivo environment and the site of PpIX synthesis, presumably explains the lower PpIX content in chondrocytes and their resistance against 5-ALA-PDT. CONCLUSION: 5-ALA-PDT might represent a treatment strategy in inflammatory joint diseases without endangering the cartilage function. However, further in vitro and in vivo experiments are required to confirm this data in the authentic environment of chondrocytes, the articular cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For cell-based cartilage repair strategies, an ex vivo expansion phase is required to obtain sufficient numbers of cells needed for therapy. Although recent reports demonstrated the central role of oxygen for the function and differentiation of chondrocytes, a beneficial effect of low oxygen concentrations during the expansion of the cells to further improve their chondrogenic capacity has not been investigated.Therefore, freshly harvested bovine articular chondrocytes were grown in two-dimensional monolayer cultures at 1.5% and 21% O2 and redifferentiation was subsequently induced in three-dimensional micromass cultures at 1.5%, 5%, and 21% O2. Cells expanded at 1.5% O2 were characterized by low citrate synthase (aerobic energy metabolism)--and high LDH (anaerobic energy metabolism-activities,suggesting an anaerobic energy metabolism. Collagen type II mRNA was twofold higher in cells expanded at 1.5% as compared to expansion at 21% O2. Micromass cultures grown at 21% O2 showed up to a twofold increase in the tissue content of glycosaminoglycans when formed with cells expanded at 1.5% instead of 21% O2. However, no differences in the levels of transcripts and in the staining for collagen type II protein were observed in these micromass cultures. Hypoxia (1.5% and 5% O2) applied during micromass cultures gave rise to tissues with low contents of glycosaminoglycans only. In vivo, the chondrocytes are adapted to a hypoxic environment. Taking this into account, by applying 1.5% O2 in the expansion phase in the course of cell-based cartilage repair strategies, may result in a repair tissue with higher quality by increasing the content of glycosaminoglycans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a time-course comparison of human articular chondrocytes (HAC) and bone marrow-derived mesenchymal stem cells (MSC) immunophenotype was performed in order to determine similarities/differences between both cell types during monolayer culture, and to identify HAC surface markers indicative of dedifferentiation. Our results show that dedifferentiated HAC can be distinguished from MSC by combining CD14, CD90, and CD105 expression, with dedifferentiated HAC being CD14+/CD90bright/CD105dim and MSC being CD14-/CD90dim/CD105bright. Surface markers on MSC showed little variation during the culture, whereas HAC showed upregulation of CD90, CD166, CD49c, CD44, CD10, CD26, CD49e, CD151, CD51/61, and CD81, and downregulation of CD49a, CD54, and CD14. Thus, dedifferentiated HAC appear as a bona fide cell population rather than a small population of MSC amplified during monolayer culture. While most of the HAC surface markers showed major changes at the beginning of the culture period (Passage 1-2), CD26 was upregulated and CD49a downregulated at later stages of the culture (Passage 3-4). To correlate changes in HAC surface markers with changes in extracellular matrix gene expression during monolayer culture, CD14 and CD90 mRNA levels were combined into a new differentiation index and compared with the established differentiation indices based on the ratios of mRNA levels of collagen type II to I (COL2/COL1) and of aggrecan to versican (AGG/VER). A correlation of CD14/CD90 ratio at the mRNA and protein level with the AGG/VER ratio during HAC dedifferentiation in monolayer culture validated CD14/CD90 as a new membrane and mRNA based HAC differentiation index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extended lateral L-shaped approach for the treatment of displaced intra-articular fractures of the calcaneum may be complicated by wound infection, haematoma, dehiscence and injury to the sural nerve. In an effort to reduce the risk of problems with wound healing a technique was developed that combined open reduction and fixation of the joint fragments and of the anterior process with percutaneous reduction and screw fixation of the tuberosity. A group of 24 patients with unilateral isolated closed Sanders type II and III fractures was treated using this technique and compared to a similar group of 26 patients managed by the extended approach and lateral plating. The operation was significantly shorter (p < 0.001) in the first group, but more minor secondary procedures and removal of heel screws were necessary. There were no wound complications in this group, whereas four minor complications occurred in the second group. The accuracy and maintenance of reduction, and ultimate function were equivalent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this study was to evaluate the feasibility and reproducibility of high-resolution magnetic resonance imaging (MRI) and quantitative T2 mapping of the talocrural cartilage within a clinically applicable scan time using a new dedicated ankle coil and high-field MRI. MATERIALS AND METHODS: Ten healthy volunteers (mean age 32.4 years) underwent MRI of the ankle. As morphological sequences, proton density fat-suppressed turbo spin echo (PD-FS-TSE), as a reference, was compared with 3D true fast imaging with steady-state precession (TrueFISP). Furthermore, biochemical quantitative T2 imaging was prepared using a multi-echo spin-echo T2 approach. Data analysis was performed three times each by three different observers on sagittal slices, planned on the isotropic 3D-TrueFISP; as a morphological parameter, cartilage thickness was assessed and for T2 relaxation times, region-of-interest (ROI) evaluation was done. Reproducibility was determined as a coefficient of variation (CV) for each volunteer; averaged as root mean square (RMSA) given as a percentage; statistical evaluation was done using analysis of variance. RESULTS: Cartilage thickness of the talocrural joint showed significantly higher values for the 3D-TrueFISP (ranging from 1.07 to 1.14 mm) compared with the PD-FS-TSE (ranging from 0.74 to 0.99 mm); however, both morphological sequences showed comparable good results with RMSA of 7.1 to 8.5%. Regarding quantitative T2 mapping, measurements showed T2 relaxation times of about 54 ms with an excellent reproducibility (RMSA) ranging from 3.2 to 4.7%. CONCLUSION: In our study the assessment of cartilage thickness and T2 relaxation times could be performed with high reproducibility in a clinically realizable scan time, demonstrating new possibilities for further investigations into patient groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to examine the clinical feasibility and reproducibility of kinematic MR imaging with respect to changes in T (2) in the femoral condyle articular cartilage. We used a flexible knee coil, which allows acquisition of data in different positions from 40 degrees flexion to full extension during MR examinations. The reproducibility of T (2) measurements was evaluated for inter-rater and inter-individual variability and determined as a coefficient of variation (CV) for each volunteer and rater. Three different volunteers were measured twice and regions of interest (ROIs) were selected by three raters at different time points. To prove the clinical feasibility of this method, 20 subjects (10 patients and 10 age- and sex-matched volunteers) were enrolled in the study. Inter-rater variability ranged from 2 to 9 and from 2 to 10% in the deep and superficial zones, respectively. Mean inter-individual variability was 7% for both zones. Different T (2) values were observed in the superficial cartilage zone of patients compared with volunteers. Since repair tissue showed a different behavior in the contact zone compared with healthy cartilage, a possible marker for improved evaluation of repair tissue quality after matrix-associated autologous chondrocyte transplantation (MACT) may be available and may allow biomechanical assessment of cartilage transplants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) is a major anabolic regulator in articular cartilage. The IGF-binding proteins (IGFBPs) are increased during osteoarthritis (OA), but the function of the later proteins remains unknown. In general, the IGFBPs are pluripotential effectors capable of IGF regulation and of acting on their own to control key cell functions, including survival and proliferation. The independent functions are often associated with their cell location, and therefore this study explores the distribution of IGFBP-2 and IGFBP-3 in articular chondrocytes. Immunohistochemistry was used to localize IGFBP-2 in normal human articular cartilage. Bovine chondrocytes were used for subcellular fractionation (hypotonic cell lysis) under nonreducing conditions and nuclear purification (centrifugation on sucrose cushions). Cell fraction markers and IGFBPs were assayed in the subcellular fractions by Western immunoblot. The IHC results showed association of IGFBP-2 with chondrocytes, but not with the nuclei. Subcellular fractionation of isolated chondrocytes yielded intact nuclei as assessed at the light microscopic level; the nuclear marker histone H1 was exclusively associated with this fraction. More than 90% of the cytoplasmic marker GAPDH and all the detectable IGFBP-2 were in the cytoplasmic fraction. Immunoreactive IGFBP-3 was found in the cytoplasmic and peri-nuclear/nuclear fractions. Chondrocytes contain intracellular IGFBP-2 and IGFBP-3 but only IGFBP-3 is associated with nuclei. This suggests the hypothesis that the actions of these IGFBPs in articular cartilage extend beyond the classic modulation of IGF receptor action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: In clinical tissue-engineering-based approaches to articular cartilage repair, various types of flap are frequently used to retain an implanted construct within the defect, and they are usually affixed by suturing. We hypothesize that the suturing of articular cartilage is associated with a loss of chondrocytes from, and osteoarthritis-like changes within, the perisutural area. MATERIALS AND METHODS: We established a large, partial-thickness defect model in the femoral groove of adult goats. The defects were filled with bovine fibrinogen to support a devitalized flap of autologous synovial tissue, which was sutured to the surrounding articular cartilage with single, interrupted stitches. The perisutural and control regions were analyzed histologically, histochemically and histomorphometrically shortly after surgery and 3 weeks later. RESULTS: Compared to control regions, chondrocytes were lost from the perisutural area even during the first few hours of surgery. During the ensuing 3 weeks, the numerical density of cells in the perisutural area decreased significantly. The cell losses were associated with a loss of proteoglycans from the extracellular matrix. Shortly after surgery, fissures were observed within the walls of the suture channels. By the third week, their surface density had increased significantly and they were filled with avascular mesenchymal tissue. CONCLUSIONS: The suturing of articular cartilage induces severe local damage, which is progressive and reminiscent of that associated with the early stages of osteoarthritis. This damage could be most readily circumvented by adopting an alternative mode of flap affixation, such as gluing with a biological adhesive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). METHODS: To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. RESULTS: Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. CONCLUSION: This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. METHODS: Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. RESULTS: A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 +/- 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. CONCLUSIONS: These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA.