981 resultados para workshop-based tutorials
Resumo:
In order to best utilize the limited resource of medical resources, and to reduce the cost and improve the quality of medical treatment, we propose to build an interoperable regional healthcare systems among several levels of medical treatment organizations. In this paper, our approaches are as follows:(1) the ontology based approach is introduced as the methodology and technological solution for information integration; (2) the integration framework of data sharing among different organizations are proposed(3)the virtual database to realize data integration of hospital information system is established. Our methods realize the effective management and integration of the medical workflow and the mass information in the interoperable regional healthcare system. Furthermore, this research provides the interoperable regional healthcare system with characteristic of modularization, expansibility and the stability of the system is enhanced by hierarchy structure.
Resumo:
This study puts forward a method to model and simulate the complex system of hospital on the basis of multi-agent technology. The formation of the agents of hospitals with intelligent and coordinative characteristics was designed, the message object was defined, and the model operating mechanism of autonomous activities and coordination mechanism was also designed. In addition, the Ontology library and Norm library etc. were introduced using semiotic method and theory, to enlarge the method of system modelling. Swarm was used to develop the multi-agent based simulation system, which is favorable for making guidelines for hospital's improving it's organization and management, optimizing the working procedure, improving the quality of medical care as well as reducing medical charge costs.
Resumo:
We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.
Resumo:
The financial crisis of 2007-2009 and the subsequent reaction of the G20 have created a new global regulatory landscape. Within the EU, change of regulatory institutions is ongoing. The research objective of this study is to understand how institutional changes to the EU regulatory landscape may affect corresponding institutionalized operational practices within financial organizations and to understand the role of agency within this process. Our motivation is to provide insight into these changes from an operational management perspective, as well as to test Thelen and Mahoney?s (2010) modes of institutional change. Consequently, the study researched implementations of an Investment Management System with a rules-based compliance module within financial organizations. The research consulted compliance and risk managers, as well as systems experts. The study suggests that prescriptive regulations are likely to create isomorphic configurations of rules-based compliance systems, which consequently will enable the institutionalization of associated compliance practices. The study reveals the ability of some agents within financial organizations to control the impact of regulatory institutions, not directly, but through the systems and processes they adopt to meet requirements. Furthermore, the research highlights the boundaries and relationships between each mode of change as future avenues of research.
Resumo:
European grassland-based livestock production systems are challenged to produce more milk and meat to meet increasing world demand and to achieve this by using fewer resources. Legumes offer great potential for coping with such requests. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system and these are most effective in mixed swards with a legume abundance of 30-50%. The resulting benefits are a reduced dependency on fossil energy and industrial N fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication due to bioactive secondary metabolites. In addition, legumes may offer an option for adapting to higher atmospheric CO2 concentrations and to climate change. Legumes generate these benefits at the level of the managed land area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research in order to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland-livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can only be expected that legumes will become more important in the future.
Resumo:
Social tagging has become very popular around the Internet as well as in research. The main idea behind tagging is to allow users to provide metadata to the web content from their perspective to facilitate categorization and retrieval. There are many factors that influence users' tag choice. Many studies have been conducted to reveal these factors by analysing tagging data. This paper uses two theories to identify these factors, namely the semiotics theory and activity theory. The former treats tags as signs and the latter treats tagging as an activity. The paper uses both theories to analyse tagging behaviour by explaining all aspects of a tagging system, including tags, tagging system components and the tagging activity. The theoretical analysis produced a framework that was used to identify a number of factors. These factors can be considered as categories that can be consulted to redirect user tagging choice in order to support particular tagging behaviour, such as cross-lingual tagging.
Resumo:
This paper presents a software-based study of a hardware-based non-sorting median calculation method on a set of integer numbers. The method divides the binary representation of each integer element in the set into bit slices in order to find the element located in the middle position. The method exhibits a linear complexity order and our analysis shows that the best performance in execution time is obtained when slices of 4-bit in size are used for 8-bit and 16-bit integers, in mostly any data set size. Results suggest that software implementation of bit slice method for median calculation outperforms sorting-based methods with increasing improvement for larger data set size. For data set sizes of N > 5, our simulations show an improvement of at least 40%.
Resumo:
Expert systems have been increasingly popular for commercial importance. A rule based system is a special type of an expert system, which consists of a set of ‘if-then‘ rules and can be applied as a decision support system in many areas such as healthcare, transportation and security. Rule based systems can be constructed based on both expert knowledge and data. This paper aims to introduce the theory of rule based systems especially on categorization and construction of such systems from a conceptual point of view. This paper also introduces rule based systems for classification tasks in detail.
Resumo:
We present an intuitive geometric approach for analysing the structure and fragility of T1-weighted structural MRI scans of human brains. Apart from computing characteristics like the surface area and volume of regions of the brain that consist of highly active voxels, we also employ Network Theory in order to test how close these regions are to breaking apart. This analysis is used in an attempt to automatically classify subjects into three categories: Alzheimer’s disease, mild cognitive impairment and healthy controls, for the CADDementia Challenge.
Resumo:
Policy makers are in broad agreement that demand response should play a major role in EU electricity systems and provide much needed future system flexibility. Yet, little demand response has been forthcoming in member states to date. This paper identifies some of the technical potential for demand response, based on empirical data from one UK demand aggregator. Half-hourly electricity readings of demand during normal operation and during response events have been analysed for different industry and service sectors. We review these findings in the context of ongoing EU policy developments with particular focus on the role appropriate arrangements to enhance the available resource. We conclude that in some sectors appropriate policy and regulation could triple the available response capacity and thereby lead to stronger commercial uptake of demand response.
Resumo:
We discussed a floating mechanism based on quasi-magnetic levitation method that can be attached at the endpoint of a robot arm in order to construct a novel redundant robot arm for producing compliant motions. The floating mechanism can be composed of magnets and a constraint mechanism such that the repelling force of the magnets floats the endpoint part of the mechanism stable for the guided motions. The analytical and experimental results show that the proposed floating mechanism can produce stable floating motions with small inertia and viscosity. The results also show that the proposed mechanism can detect small force applied to the endpoint part because the friction force of the mechanism is very small.
Resumo:
Various complex oscillatory processes are involved in the generation of the motor command. The temporal dynamics of these processes were studied for movement detection from single trial electroencephalogram (EEG). Autocorrelation analysis was performed on the EEG signals to find robust markers of movement detection. The evolution of the autocorrelation function was characterised via the relaxation time of the autocorrelation by exponential curve fitting. It was observed that the decay constant of the exponential curve increased during movement, indicating that the autocorrelation function decays slowly during motor execution. Significant differences were observed between movement and no moment tasks. Additionally, a linear discriminant analysis (LDA) classifier was used to identify movement trials with a peak accuracy of 74%.
Resumo:
In order to overcome divergence of estimation with the same data, the proposed digital costing process adopts an integrated design of information system to design the process knowledge and costing system together. By employing and extending a widely used international standard, industry foundation classes, the system can provide an integrated process which can harvest information and knowledge of current quantity surveying practice of costing method and data. Knowledge of quantification is encoded from literatures, motivation case and standards. It can reduce the time consumption of current manual practice. The further development will represent the pricing process in a Bayesian Network based knowledge representation approach. The hybrid types of knowledge representation can produce a reliable estimation for construction project. In a practical term, the knowledge management of quantity surveying can improve the system of construction estimation. The theoretical significance of this study lies in the fact that its content and conclusion make it possible to develop an automatic estimation system based on hybrid knowledge representation approach.
Resumo:
This paper presents a hierarchical clustering method for semantic Web service discovery. This method aims to improve the accuracy and efficiency of the traditional service discovery using vector space model. The Web service is converted into a standard vector format through the Web service description document. With the help of WordNet, a semantic analysis is conducted to reduce the dimension of the term vector and to make semantic expansion to meet the user’s service request. The process and algorithm of hierarchical clustering based semantic Web service discovery is discussed. Validation is carried out on the dataset.