962 resultados para wind power plants
Resumo:
Para a diminuição da dependência energética de Portugal face às importações de energia, a Estratégia Nacional para a Energia 2020 (ENE 2020) define uma aposta na produção de energia a partir de fontes renováveis, na promoção da eficiência energética tanto nos edifícios como nos transportes com vista a reduzir as emissões de gases com efeito de estufa. No campo da eficiência energética, o ENE 2020 pretende obter uma poupança energética de 9,8% face a valores de 2008, traduzindo-se em perto de 1800 milhões de tep já em 2015. Uma das medidas passa pela aposta na mobilidade eléctrica, onde se prevê que os veículos eléctricos possam contribuir significativamente para a redução do consumo de combustível e por conseguinte, para a redução das emissões de CO2 para a atmosfera. No entanto, esta redução está condicionada pelas fontes de energia utilizadas para o abastecimento das baterias. Neste estudo foram determinados os consumos de combustível e as emissões de CO2 de um veículo de combustão interna adimensional representativo do parque automóvel. É também estimada a previsão de crescimento do parque automóvel num cenário "Business-as-Usual", através dos métodos de previsão tecnológica para o horizonte 2010-2030, bem como cenários de penetração de veículos eléctricos para o mesmo período com base no método de Fisher- Pry. É ainda analisado o impacto que a introdução dos veículos eléctricos tem ao nível dos consumos de combustível, das emissões de dióxido de carbono e qual o impacto que tal medida terá na rede eléctrica, nomeadamente no diagrama de carga e no nível de emissões de CO2 do Sistema Electroprodutor Nacional. Por fim, é avaliado o impacto dos veículos eléctricos no diagrama de carga diário português, com base em vários perfis de carga das baterias. A introdução de veículos eléctricos em Portugal terá pouca expressão dado que, no melhor dos cenários haverão somente cerca de 85 mil unidades em circulação, no ano de 2030. Ao nível do consumo de combustíveis rodoviários, os veículos eléctricos poderão vir a reduzir o consumo de gasolina até 0,52% e até 0,27% no consumo de diesel, entre 2010 e 2030, contribuindo ligeiramente uma menor dependência energética externa. Ao nível do consumo eléctrico, o abastecimento das baterias dos veículos eléctricos representará até 0,5% do consumo eléctrico total, sendo que parte desse abastecimento será garantido através de centrais de ciclo combinado a gás natural. Apesar da maior utilização deste tipo de centrais térmicas para produção de energia, tanto para abastecimento das viaturas eléctricas, como para o consumo em geral, verifica-se que em 2030, o nível de emissões do sistema electroprodutor será cerca de 46% inferior aos níveis registados em 2010, prevendo-se que atinja as 0,163gCO2/kWh produzido pelo Sistema Electroprodutor Nacional devido à maior quota de produção das fontes de energia renovável, como o vento, a hídrica ou a solar.
Resumo:
Demand for power is growing every day, mainly due to emerging economies in countries such as China, Russia, India, and Brazil. During the last 50 years steam pressure and temperature in power plants have been continuously raised to improve thermal efficiency. Recent efforts to improve efficiency leads to the development of a new generation of heat recovery steam generator, where the Benson once-through technology is applied to improve the thermal efficiency. The main purpose of this paper is to analyze the mechanical behavior of a high pressure superheater manifold by applying finite element modeling and a finite element analysis with the objective of analyzing stress propagation, leading to the study of damage mechanism, e.g., uniaxial fatigue, uniaxial creep for life prediction. The objective of this paper is also to analyze the mechanical properties of the new high temperature resistant materials in the market such as 2Cr Bainitic steels (T/P23 and T/P24) and also the 9-12Cr Martensitic steels (T/P91, T/P92, E911, and P/T122). For this study the design rules for construction of power boilers to define the geometry of the HPSH manifold were applied.
Resumo:
This paper proposes a wind power forecasting methodology based on two methods: direct wind power forecasting and wind speed forecasting in the first phase followed by wind power forecasting using turbines characteristics and the aforementioned wind speed forecast. The proposed forecasting methodology aims to support the operation in the scope of the intraday resources scheduling model, namely with a time horizon of 5 minutes. This intraday model supports distribution network operators in the short-term scheduling problem, in the smart grid context. A case study using a real database of 12 months recorded from a Portuguese wind power farm was used. The results show that the straightforward methodology can be applied in the intraday model with high wind speed and wind power accuracy. The wind power forecast direct method shows better performance than wind power forecast using turbine characteristics and wind speed forecast obtained in first phase.
Resumo:
As wind power generation undergoes rapid growth, new technical challenges emerge: dynamic stability and power quality. The influence of wind speed disturbances and a pitch control malfunction on the quality of the energy injected into the electric grid is studied for variable-speed wind turbines with different power-electronic converter topologies. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with permanent magnet synchronous generators. The performance of disturbance attenuation and system robustness is ascertained. Simulation results are presented and conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A noção de Economia relativa ao Hidrogénio no vocabulário dos líderes políticos e empresariais tem vindo a mudar sobretudo pela preocupação da poluição global, segurança energética e mudanças climáticas, para além do crescente domínio técnico dos cientistas e engenheiros. O interesse neste composto, que é o elemento mais simples e abundante no universo, está a crescer, devido aos avanços tecnológicos das células de combustível – as potenciais sucessoras das baterias dos aparelhos portáteis eletrónicos, centrais elétricas e motores de combustão interna. Existem métodos já bem desenvolvidos para produzir o hidrogénio. Contudo, destacase a eletrólise da água, não só por ser um método simples mas porque pode utilizar recursos energéticos renováveis, tais como, o vento ou os painéis fotovoltaicos, e aumentar a sua eficiência. Os desafios para melhorar a utilização deste método consistem em reduzir o consumo, a manutenção e os custos energéticos e aumentar a confiança, a durabilidade e a segurança. Mais ainda, consistem em rentabilizar o subproduto oxigénio pois é um gás industrial e medicinal muito importante. Neste trabalho, estudou-se a viabilidade económica da instalação de uma unidade de produção de hidrogénio e oxigénio puros por eletrólise da água, utilizando como fonte energética a energia solar, na empresa Gasoxmed – Gases Medicinais S.A., pretendendo num futuro próximo, comercializar o hidrogénio como fonte de energia, e por outro lado, aproveitar o subproduto oxigénio para utilização industrial. Projetou-se assim uma unidade utilizando um eletrolisador da marca Proton, modelo C30, com capacidade de produção gasosa de 3 kg/h (30 m3/h) de hidrogénio e 20 kg/h (15 m3/h) de oxigénio. Os gases produzidos são comprimidos num compressor da marca RIX a 200 bares para posterior armazenamento em cilindros pressurizados. Dimensionou-se ainda um sistema de miniprodução fotovoltaico com potência 250 kW para alimentar eletricamente a instalação. A realização do projeto na nova área de produção necessitará de 1.713.963€, os quais serão adquiridos por empréstimo bancário. Definiram-se todos os custos fixos associados ao projeto que perfazem um total de 62.554€/mês para os primeiros 5 anos (duração do crédito bancário) findo o qual diminuirão para 21.204€/mês. Da comercialização do hidrogénio, do oxigénio industrial e da eletricidade produzida no sistema de miniprodução de 250 kW, prevê-se um lucro mensal de 117.925€, perfazendo assim um total líquido mensal positivo de 55.371€ durante os primeiros 5 anos e a partir daí de 96.721€/mês, resultando uma amortização do investimento inicial no final do 3º ano.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded with more attention. Electric and magnetic fields generated by lightning represent a serious hazard to wind turbines. A new case study is presented with two interconnected wind turbines, considering that lightning strikes directly the blade of one wind turbine. Computer simulations obtained by using EMTP-RV are presented and conclusions are duly drawn.
Resumo:
The integration of large amounts of wind energy in power systems raises important operation issues such as the balance between power demand and generation. The pumped storage hydro (PSH) units are seen as one solution for this issue, avoiding the need for wind power curtailments. However, the behavior of a PSH unit might differ considerably when it operates in a liberalized market with some degree of market power. In this regard, a new approach for the optimal daily scheduling of a PSH unit in the day-ahead electricity market was developed and presented in this paper, in which the market power is modeled by a residual inverse demand function with a variable elasticity. The results obtained show that increasing degrees of market power of the PSH unit correspond to decreasing levels of storage and, therefore, the capacity to integrate wind power is considerably reduced under these circumstances.
Resumo:
This paper is concerned with direct or indirect lightning strokes on wind turbines, studying overvoltages and electromagnetic transients. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded with more attention. With the aim of providing further insights into the lightning protection of wind turbines, describing the transient behavior in an accurate way, the restructured version (RV) of the electromagnetic transients program (EMTP) is used in this paper. A new case study is presented with two interconnected wind turbines, considering a direct lightning stroke to the blade or considering that lightning strikes the soil near a tower. Comprehensive computer simulations with EMTP-RV are presented and conclusions are duly drawn.
Resumo:
In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.
Resumo:
Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased exposure to man from enhanced naturally occurring materials. Over the past decades there has been some discussion about the elevated natural background radiation in the area near coal-fired power plants due to high uranium and thorium content present in coal. This work describes the methodology developed to assess the radiological impact due to natural radiation background increasing levels, potentially originated by a coal-fired power plant’s operation. Gamma radiation measurements have been done with two different instruments: a scintillometer (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). A total of 40 relevant sampling points were established at locations within 20 km from the power plant: 15 urban and 25 suburban measured stations. The highest values were measured at the sampling points near to the power plant and those located in the area within the 6 and 20 km from the stacks. This may be explained by the presence of a huge coal pile (1.3 million tons) located near the stacks contributing to the dispersion of unburned coal and, on the other hand, the height of the stacks (225 m) which may influence ash’s dispersion up to a distance of 20 km. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (212Pb, 214Pb, 226Ra 232Th, 228Ac, 234Th 234Pa, 235U, etc.). This work has been primarily done to in order to assess the impact of a coal-fired power plant operation on the background radiation level in the surrounding area. According to the results, an increase or at least an influence has been identified both qualitatively and quantitatively.
Resumo:
This paper presents a coordination approach to maximize the total profit of wind power systems coordinated with concentrated solar power systems, having molten-salt thermal energy storage. Both systems are effectively handled by mixed-integer linear programming in the approach, allowing enhancement on the operational during non-insolation periods. Transmission grid constraints and technical operating constraints on both systems are modeled to enable a true management support for the integration of renewable energy sources in day-ahead electricity markets. A representative case study based on real systems is considered to demonstrate the effectiveness of the proposed approach. © IFIP International Federation for Information Processing 2015.