879 resultados para whether time may be extended after order filed


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective antiviral agents are thought to inhibit hepatitis B virus (HBV) DNA synthesis irreversibly by chain termination because reverse transcriptases (RT) lack an exonucleolytic activity that can remove incorporated nucleotides. However, since the parameters governing this inhibition are poorly defined, fully delineating the catalytic mechanism of the HBV-RT promises to facilitate the development of antiviral drugs for treating chronic HBV infection. To this end, pyrophosphorolysis and pyrophosphate exchange, two nonhydrolytic RT activities that result in the removal of newly incorporated nucleotides, were characterized by using endogenous avian HBV replication complexes assembled in vivo. Although these activities are presumed to be physiologically irrelevant for every polymerase examined, the efficiency with which they are catalyzed by the avian HBV-RT strongly suggests that it is the first known polymerase to catalyze these reactions under replicative conditions. The ability to remove newly incorporated nucleotides during replication has important biological and clinical implications: these activities may serve a primer-unblocking function in vivo. Analysis of pyrophosphorolysis on chain-terminated DNA revealed that the potent anti-HBV drug β-l-(−)-2′,3′-dideoxy-3′-thiacytidine (3TC) was difficult to remove by pyrophosphorolysis, in contrast to ineffective chain terminators such as ddC. This disparity may account for the strong antiviral efficacy of 3TC versus that of ddC. The HBV-RT pyrophosphorolytic activity may therefore be a novel determinant of antiviral drug efficacy, and could serve as a target for future antiviral drug therapy. The strong inhibitory effect of cytoplasmic pyrophosphate concentrations on viral DNA synthesis may also partly account for the apparent slow rate of HBV genome replication.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to its well known sedative and teratogenic effects, thalidomide also possesses potent immunomodulatory and antiinflammatory activities, being most effective against leprosy and chronic graft-versus-host disease. The immunomodulatory activity of thalidomide has been ascribed to the selective inhibition of tumor necrosis factor alpha from monocytes. The molecular mechanism for the immunomodulatory effect of thalidomide remains unknown. To elucidate this mechanism, we synthesized an active photoaffinity label of thalidomide as a probe to identify the molecular target of the drug. Using the probe, we specifically labeled a pair of proteins of 43-45 kDa with high acidity from bovine thymus extract. Purification of these proteins and partial peptide sequence determination revealed them to be alpha1-acid glycoprotein (AGP). We show that the binding of thalidomide photoaffinity label to authentic human AGP is competed with both thalidomide and the nonradioactive photoaffinity label at concentrations comparable to those required for inhibition of production of tumor necrosis factor alpha from human monocytes, suggesting that AGP may be involved in the immunomodulatory activity of thalidomide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathway of protein folding is now being analyzed at the resolution of individual residues by kinetic measurements on suitably engineered mutants. The kinetic methods generally employed for studying folding are typically limited to the time range of > or = 1 ms because the folding of denatured proteins is usually initiated by mixing them with buffers that favor folding, and the dead time of rapid mixing experiments is about a millisecond. We now show that the study of protein folding may be extended to the microsecond time region by using temperature-jump measurements on the cold-unfolded state of a suitable protein. We are able to detect early events in the folding of mutants of barstar, the polypeptide inhibitor of barnase. A preliminary characterization of the fast phase from spectroscopic and phi-value analysis indicates that it is a transition between two relatively solvent-exposed states with little consolidation of structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta pesquisa avalia o impacto do \"Programa de Garantia da Atividade Agropecuária\" para agricultores familiares, conhecido como Proagro Mais. A relevância do trabalho fundamenta-se no considerável tamanho do Programa dentro do contexto das políticas de gestão de risco agrícola no Brasil. Além disso, é a primeira pesquisa desse tipo na literatura científica do país. A amostra é formada por produtores de milho do Estado do Paraná, tendo como linha base o ano de 2003, uma vez que é o ano anterior ao lançamento do Proagro Mais, e o ano de 2005 como ano de impacto. A base de dados utilizada neste estudo foi fornecida pelo Tribunal de Contas da União (TCU), cujas variáveis relevantes incluem características da cultura e dos agricultores familiares, como área financiada, atividades agrícolas complementares, educação e rendimento esperado. Adicionalmente, a partir de outras fontes públicas, foram adicionadas variáveis meteorológicas e regionais para controlar a localização da fazenda. O objetivo da pesquisa é avaliar o impacto do Proagro Mais sobre o montante de crédito por hectare concedido aos beneficiários do Programa. As metodologias usadas incluem o Propensity Score Matching (PSM), a Diferença das Diferenças (DID) e dois estimadores condicionais do DID com PSM usando dados em painel e repeated cross-section. As estimativas econométricas mostram que o Efeito Médio do Tratamento nos Tratados (EMTT) teve sinal negativo na maioria dos modelos revelando que, após o período de perda de rendimento, o grupo de controle teve um valor médio mais elevado de crédito por hectare do que os beneficiários do Proagro Mais. Os resultados sugerem a existência de mecanismos que poderiam complementar ou substituir o Proagro Mais como instrumento de gestão de risco agrícola, mas também podem sugerir que o Programa avaliado não cubra todos os riscos do setor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To solve problems in polymer fluid dynamics, one needs the equation of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (1) one can write a continuum expression for the stress tensor in terms of kinematic tensors, or (2) one can select a molecular model that represents the polymer molecule, and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. In this review, we restrict the discussion primarily to the simplest stress tensor expressions or “constitutive equations” containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. The virtue of studying the simplest models is that we can discover some general notions as to which types of empiricisms or which types of molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows. These are the flows that are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.