978 resultados para wheat straw pulp
Resumo:
Photosynthetic activity of cereals has traditionally been studied using leaves, thus neglecting the role of other organs such as ears. Here, we studied the effects of water status and genotypes on the photosynthetic activity of the flag leaf blade and the ear of durum wheat. The various parameters related to the photosynthetic activity were analysed in relation to the total above-ground plant biomass and grain yield at maturity. Four local varieties plus two cultivars adapted to the semiarid areas of South Morocco were grown in pots in a greenhouse. Five different water treatments were maintained from the beginning of stem elongation to maturity, when shoot biomass and grain yield were recorded. The net photosynthesis (A), stomatal conductance (gs) and transpiration (T) of the ear and the flag leaf were measured at anthesis. In both organs these factors decreased significantly with water deficit, whereas the A/T and A/gs ratios increased. The genotype effect was also significant for all traits studied. Whole-organ photosynthesis was much higher in the ear than in the flag leaf in well-watered conditions. As water stress developed, photosynthesis decreased less in the ear than in the flag leaf. Whole-ear photosynthesis correlated better than flag leaf photosynthesis with biomass and yield. Nevertheless, the relationships of the whole flag leaf with biomass and yield improved as the water stress became more severe, suggesting a progressive shift of yield from sink to source limitation. For all water regimes the ratios A/gs and A/T of the ear also showed a higher (negative) correlation with both biomass and yield than those of the flag leaf. The results indicate that the ear has a greater photosynthetic role than the flag leaf in determining grain yield, not only in drought but also in the absence of stress.
Resumo:
The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a DeltaphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.
Resumo:
The objectives of this study were to evaluate nitrogen utilization by sugarcane ratoon from two sources, applied urea and sugarcane straw covering soil surface (trash blanket), besides the recovery of N from both sources in the soil-plant system. The following treatments were established in a randomized block design with four replicates: T1, vinasse-urea (100 kg ha-1 of urea-N) mixture applied on the total area of the soil covered with cane trash labeled with 15N; T2, vinasse-urea mixture (urea labeled with 15N; 100 kg ha-1 of urea-N) applied on the total area of the soil covered with non-labeled sugarcane trash; and T3, urea-15N (100 kg ha-1 of urea-N) applied in furrows at both sides of cane rows, with previous surface application of vinasse, onto soil without trash covering. The vinasse was applied at a rate of 100 m³ ha-1 in all treatments. The experiment was carried out on a Yellow Red Podzolic soil (Paleudalf), from October 1997 to August 1998, in Piracicaba, SP, Brazil. The nitrogen use efficiency of urea by the sugarcane ratoon was 21%, while that of the sugarcane straw was 9%. The main contributions of N from sugarcane trash, during one cycle, are the preservation and increase of the organic N in soil. The tendency for a lower accumulation of urea-N in the sugarcane plant, in the soil surface covered with sugarcane residue, was compensated by the assimilation of N from trash mineralization. Nitrogen derived from cane trash was more available to plants in the second half of the ratoon cycle
Resumo:
Since red alleles (R) of the genes that control grain colour are important for the improvement of preharvest sprouting resistance in wheat and there are three independently inherited loci, on chromosomes 3A, 3B and 3D of hexaploid wheat, it is possible to vary the dosage of dominant alleles in a breeding program. The objective of this work was to evaluate the dosage effect of R genes on preharvest sprouting, in a single seed descent population, named TRL, derived from the cross between Timgalen, white-grained wheat, and RL 4137, red-grained wheat. The study was carried out using sprouting data in ripe ears obtained under artificial conditions in a rainfall simulator over three years. According to the results there is a significant effect on preharvest sprouting provided by colour and a weaker effect of increasing R dosage. However, the significant residual genotypic variation between red lines and all lines (reds and whites) at 0.1% level showed that preharvest sprouting was also controlled by other genes. There are no significant correlations between sprouting and date of ripeness or between ripeness, R dosage and colour intensity.
Resumo:
The objective of this work was to evaluate the possibility of obtaining recombinant inbred wheat lines more resistant to preharvest sprouting, independently of colour genes, in three red-grained Brazilian wheat populations. The results showed statistical significance among lines within all populations, which presented a normal distribution and transgressive segregation for preharvest sprouting. The normal distribution of the lines from all red-grained populations suggests that sprouting, excluding the genes expressing seed coat pigmentation, is, probably, controlled by many genes. These findings also indicate that it may be possible to improve resistance to preharvest sprouting, independently of the colour genes.
Resumo:
The objective of this work was to evaluate the use of basic density and pulp yield correlations with some chemical parameters, in order to differentiate an homogeneous eucalyptus tree population, in terms of its potential for pulp production or some other technological applications. Basic density and kraft pulp yield were determined for 120 Eucalyptus globulus trees, and the values were plotted as frequency distributions. Homogenized samples from the first and fourth density quartiles and first and fourth yield quartiles were submitted to total phenols, total sugars and methoxyl group analysis. Syringyl/guaiacyl (S/G) and syringaldehyde/vanillin (S/V) ratios were determined on the kraft lignins from wood of the same quartiles. The results show the similarity between samples from high density and low yield quartiles, both with lower S/G (3.88-4.12) and S/V (3.99-4.09) ratios and higher total phenols (13.3-14.3 g gallic acid kg-1 ). Woods from the high yield quartile are statistically distinguished from all the others because of their higher S/G (5.15) and S/V (4.98) ratios and lower total phenols (8.7 g gallic acid kg-1 ). Methoxyl group and total sugars parameters are more adequate to distinguish wood samples with lower density.
Resumo:
The objective of this study was to assess the impact of genetic breeding on grain yield, and to identify the physiological traits associated to the increment in yield and their related growth processes, for wheat cultivars grown in Southern Brazil, in the past five decades. Seven wheat cultivars released between 1940 and 1992, were compared for physiological aspects associated with grain yield. Grain yield, biological yield, biomass partitioning, harvest index and grain yield components were also determined. The number of grains per square meter was more affected by plant breeding and was better correlated with grain yield (r = 0.94, p<0.01) than with grain weight (r = -0.39ns). The higher number of grains per square meter was better correlated with the number of grains per spike in the modern cultivars than in the older ones. The genetic gain in grain yield was 44.9 kg ha-1 per year, reflecting important efforts of the breeding programs carried out in Southern Brazil. Grain yield changes, during the period of study, were better associated with biomass production (r = 0.78, p<0.01) than with harvest index (r = 0.65, p<0.01).
Resumo:
The objective of this work was to determine the genetic variability available for triticale (X Triticosecale Wittmack) crop improvement in Brazil. Forty-two wheat genomic microsatellites were used to estimate the molecular diversity of 54 genotypes, which constitute the base of one of the major triticale breeding programs in the country. Average heterozygosity was 0.06 and average and effective number of alleles per locus were 2.13 and 1.61, respectively, with average allelic frequency of 0.34. The set of genomic wheat microsatellites used clustered the genotypes into seven groups, even when the germplasm was originated primarily from only two triticale breeding programs, a fact reflected on the average polymorphic information content value estimated for the germplasm (0.36). The 71.42% transferability achieved for the tested microsatellites indicates the possibility of exploiting these transferable markers in further triticale genetic and breeding studies, even those mapped on the D genome of wheat, when analyzing hexaploid triticales.
Morphological, pedigree, and molecular distances and their association with hybrid wheat performance
Resumo:
The objectives of this work were to estimate the genetic distance among wheat genotypes using morphological, pedigree, molecular, and combined morphological and molecular measures, to determine the correlations between these measures, and to evaluate the combining ability of the genotypes. Three generations and two planting designs were studied. Six wheat genotypes were crossed using a diallel design. The F1, F2 and F3generations were evaluated in the field, in the crop seasons of 2003, 2004 and 2005, under spaced plant and full-row planting designs. The estimated general and specific combining abilities of tested hybrids were influenced both by the generation and the planting design. The correlation coefficients among the distance measures and between these measures and genotype performances of different generations for the two planting designs were low to moderate. In order to obtain a more precise estimate of the genetic distance among cultivars and its association with the hybrid performance, more than one generation, planting design, and genetic distance estimation technique should be employed.
Resumo:
The objectives of this study were to determine low-P tolerance mechanisms in contrasting wheat genotypes and to evaluate the association of these mechanisms to differential gene expression. Wheat seedlings of cultivars Toropi (tolerant to low-P availability) and Anahuac (sensitive) were evaluated. Seedlings were hydroponically grown in the absence or presence of P (1.0 mmol L-1) during three different time periods: 24, 120 and 240 hours. Free phosphate (Pi) and total P contents were measured in shoots and roots. The experiment's design was in randomized blocks with three replicates, each formed by ten plants. The relative expression of genes encoding the malate transporter TaALMT1 and the transcription factor PTF1 was evaluated. Phosphorus starvation beyond ten days increased the expression of TaALMT1 only in 'Toropi'. PTF1's expression was early induced in both genotypes under P starvation, but remained significant after ten days only in 'Toropi'. Shoot Pi concentration in 'Toropi' was independent from P availability; under starvation, 'Toropi' favored the maintenance of shoot Pi concentration. The low-P tolerance of Toropi cultivar at initial growth stages is mainly due to its ability to maintain constant the Pi shoot level.
Resumo:
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.
Resumo:
The objective of this study was to identify gliadin band patterns and the extent of genetic diversity in durum wheat genotypes from Northwestern Iran and the Republic of Azerbaijan. Gliadins from 46 landraces and four cultivars were evaluated through acid PAGE analyses. Sixty-six polymorphic bands and 81 patterns were identified. Twenty-four different motility bands and 22 patterns were found in the ω gliadin region with 14 polymorph bands and 20 patterns for α and γ gliadins, and 14 bands and 19 different patterns for β gliadins. The combination of these patterns generated 38 and 39 combinations for Gli-1 and Gli-2 loci, respectively. The genetic diversity index (H) was higher for α gliadins (0.924), followed by ω and γ gliadins (0.899 and 0.878, respectively), and for β gliadin patterns (0.866). Extensive polymorphism (H = 0.875) was observed in four gliadin pattern regions, with higher genetic diversity in the Iranian landraces than in the Azerbaijani ones. Each genotype had special identifying patterns in the gliadin acid PAGE analysis, and cluster analysis based on Jaccard's similarity coefficients formed six groups. Gliadin has a simple, repeatable and economic analysis, and can be used in genetic studies
Resumo:
The objective of this work was to evaluate the influence of different grazing periods on beef animal production and on wheat forage and grain yield. The experiment was carried out in Pato Branco, PR, Brazil. Six grazing periods were evaluated (0, 21, 42, 63, 84, and 105 days) on dual-purpose wheat cultivar BRS Tarumã. Purunã steers, with average live weight of 162 kg and ten months of age, were kept under continuous grazing using a variable stocking rate, in order to maintain the established sward height of 25 cm. Greater increases in total animal gain (TAG) occurred with longer grazing periods. However, there was little increase after 63 days (490 kg ha-1), and TAG decreased from 552 to 448 kg ha-1 between 84 and 105 days. Grain yield decreased from 2,830 to 610 kg ha-1 when the grazing period increased from 0 to 105 days, but there was little change after 63 days (750 kg ha-1). Cultivar BRS Tarumã shows excellent animal production potential, and the decision on how long wheat pastures should be grazed must be based on relative prices of grain and livestock.
Resumo:
The objective of this work was to test methods for pre-harvest sprouting assessment in wheat cultivars. Fourteen wheat cultivars were grown in Londrina and Ponta Grossa municipalities, Paraná state, Brazil. They were sampled at 10 and 17 days after physiological maturity and evaluated using the methods of germination by rainfall simulation (in a greenhouse), in-ear grain sprouting, and grains removed from the ears. The in-ear grain sprouting method allowed the differentiation of cultivars, but showed different resistance levels from the available description of cultivars. The sprouting of grain removed from the ears did not allow a reliable distinction of data on germination in any harvest date or location. The method of rainfall simulation is the most suitable for the assessment of cultivars as to pre-harvest sprouting, regardless of the sampling date and evaluated location.