995 resultados para weak order
Resumo:
Though the formal mathematical idea of introducing noninteger order derivatives can be traced from the 17th century in a letter by L’Hospital in which he asked Leibniz what the meaning of D n y if n = 1/2 would be in 1695 [1], it was better outlined only in the 19th century [2, 3, 4]. Due to the lack of clear physical interpretation their first applications in physics appeared only later, in the 20th century, in connection with visco-elastic phenomena [5, 6]. The topic later obtained quite general attention [7, 8, 9], and also found new applications in material science [10], analysis of earth-quake signals [11], control of robots [12], and in the description of diffusion [13], etc.
Resumo:
This paper proposes a novel method for controlling the convergence rate of a particle swarm optimization algorithm using fractional calculus (FC) concepts. The optimization is tested for several well-known functions and the relationship between the fractional order velocity and the convergence of the algorithm is observed. The FC demonstrates a potential for interpreting evolution of the algorithm and to control its convergence.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F , satisfying the following property: for every monic polynomial f(x) = xn + an-1xn-1 + … +a1x + aο over F, with a root in F and aο = (-1)n det(AB), there are nonsingular matrices X, Y ϵ Fnxn such that X A X-1 Y BY-1 has characteristic polynomial f (x). © 2014 © 2014 Taylor & Francis.
Resumo:
Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.
Resumo:
The differentiation of non-integer order has its origin in the seventeenth century, but only in the last two decades appeared the first applications in the area of control theory. In this paper we consider the study of a heat diffusion system based on the application of the fractional calculus concepts. In this perspective, several control methodologies are investigated namely the fractional PID and the Smith predictor. Extensive simulations are presented assessing the performance of the proposed fractional-order algorithms.
Resumo:
Fractional calculus (FC) is widely used in most areas of science and engineering, being recognized its ability to yield a superior modeling and control in many dynamical systems. In this perspective, this article illustrates two applications of FC in the area of control systems. Firstly, is presented a methodology of tuning PID controllers that gives closed-loop systems robust to gain variations. After, a fractional-order PID controller is proposed for the control of an hexapod robot with three dof legs. In both cases, it is demonstrated the system's superior performance by using the FC concepts.
Resumo:
Thesis submitted for assessment with a view to obtaining the degree of Doctor of Political and Social Science of the European University Institute
Resumo:
Signal Processing, vol. 86, nº 10
Resumo:
We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.
Resumo:
This paper studies the performance of integer and fractional order controllers in a hexapod robot with joints at the legs having viscous friction and flexibility. For that objective the robot prescribed motion is characterized in terms of several locomotion variables. The controller performance is analised through the Nyquist stability criterion. A set of model-based experiments reveals the influence of the different controller implementations upon the proposed metrics.
Resumo:
In recent years, significant research in the field of electrochemistry was developed. The performance of electrical devices, depending on the processes of the electrolytes, was described and the physical origin of each parameter was established. However, the influence of the irregularity of the electrodes was not a subject of study and only recently this problem became relevant in the viewpoint of fractional calculus. This paper describes an electrolytic process in the perspective of fractional order capacitors. In this line of thought, are developed several experiments for measuring the electrical impedance of the devices. The results are analyzed through the frequency response, revealing capacitances of fractional order that can constitute an alternative to the classical integer order elements. Fractional order electric circuits are used to model and study the performance of the electrolyte processes.
Resumo:
In this article we describe several methods for the discretization of the differintegral operator sa, where α = u + jv is a complex value. The concept of the conjugated-order differintegral is also introduced, which enables the use of complex-order differintegrals while still producing real-valued time responses and transfer functions. The performance of the resulting approximations is analysed in both the time and frequency domains. Several results are presented that demonstrate its utility in control system design.
Resumo:
In this paper a modified version of the classical Van der Pol oscillator is proposed, introducing fractional-order time derivatives into the state-space model. The resulting fractional-order Van der Pol oscillator is analyzed in the time and frequency domains, using phase portraits, spectral analysis and bifurcation diagrams. The fractional-order dynamics is illustrated through numerical simulations of the proposed schemes using approximations to fractional-order operators. Finally, the analysis is extended to the forced Van der Pol oscillator.
Resumo:
This paper studies the dynamics of foot–ground interaction in hexapod locomotion systems. For that objective the robot motion is characterized in terms of several locomotion variables and the ground is modelled through a non-linear spring-dashpot system, with parameters based on the studies of soil mechanics. Moreover, it is adopted an algorithm with foot-force feedback to control the robot locomotion. A set of model-based experiments reveals the influence of the locomotion velocity on the foot–ground transfer function, which presents complex-order dynamics.
Resumo:
The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena. The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm for establishing the fractional order electrical potential and analyzes its characteristics.