916 resultados para waste transportation
Resumo:
Current global energy scenario and the environmental deterioration aspect motivates substituting fossil fuel with a renewable energy resource - especially transport fuel. This paper reviews the current status of trending biomass to liquid (BTL) conversion processes and focuses on the technological developments in Fischer Tropsch (FT) process. FT catalysts in use, and recent understanding of FT kinetics are explored. Liquid fuels produced via FT process from biomass derived syngas promises an attractive, clean, carbon neutral and sustainable energy source for the transportation sector. Performance of the FT process with various catalysts, operating conditions and its influence on the FT products are also presented. Experience from large scale commercial installations of FT plants, primarily utilizing coal based gasifiers, are discussed. Though biomass gasification plants exist for power generation via gas engines with power output of about 2 MWe; there are only a few equivalent sized FT plants for biomass derived syngas. This paper discusses the recent developments in conversion of biomass to liquid (BTL) transportation fuels via FT reaction and worldwide attempts to commercialize this process. All the data presented and analysed here have been consolidated from research experiences at laboratory scale as well as from industrial systems. Economic aspects of BTL are reviewed and compared. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A combustion technique is used to study the synthesis of carbon nano tubes from waste plastic as a precursor and Ni/Mo/MgO as a catalyst. The catalytic activity of three components Ni, Mo, MgO is measured in terms of amount of carbon product obtained. Different proportions of metal ions are optimized using mixture experiment in Design expert software. D-optimal design technique is adopted due to nonsimplex region and presence of constraints in the mixture experiment. The activity of the components is observed to be interdependent and the component Ni is found to be more effective. The catalyst containing Ni0.8Mo0.1MgO0.1 yields more carbon product. The structure of catalyst and CNTs are studied by using SEM, XRD, and Raman spectroscopy. SEM analysis shows the formation of longer CNTs with average diameter of 40-50 nm.
Resumo:
介绍一种可应用于高粘度稠油管输的新工艺。即用自行研制的蒸汽引射器采用无界引射方式,将蒸汽直接注入到输油管道中,利用蒸汽释放的热量提高稠油温度降低粘度,从而达到降低稠油输送压降的目的,它比间接加热输送工艺所用的蒸汽量或耗煤量大大减少。方法在辽河油田输油管线上进行了工业现场试验,取得了很好的效果。
Resumo:
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Resumo:
Great differences between municipal solid wastes(MSW)produced at different places and different times in terms of such parameters as physical ingredient and heating value lead to difficulty in effective handling of MSW. In this paper, ingredient, heating value and their temporal varying trends of typical MSW in Beijing were continuously measured and analyzed. With consideration of the process in pyrolysis and incineration, correlation between physical ingredients and heating values was induced, favorable for evaluation of heating value needed in handling of MSW from simple analysis of physical ingredients of it.
Resumo:
Contaminant behaviour in soils and fractured rock is very complex, not least because of the heterogeneity of the subsurface environment. For non-aqueous phase liquids (NAPLs), a liquid density contrast and interfacial tension between the contaminant and interstitial fluid adds to the complexity of behaviour, increasing the difficulty of predicting NAPL behaviour in the subsurface. This paper outlines the need for physical model tests that can improve fundamental understanding of NAPL behaviour in the subsurface, enhance risk assessments of NAPL contaminated sites, reduce uncertainty associated with NAPL source remediation and improve current technologies for NAPL plume remediation. Four case histories are presented to illustrate physical modelling approaches that have addressed problems associated with NAPL transport, remediation and source zone characterization. © 2006 Taylor & Francis Group, London.
Resumo:
[EN]The present doctoral thesis centers on studying pyrolysis as a chemical recycling technique for rejected packaging waste fractions coming from separation and sorting plants. The pyrolysis experiments have been carried out in a lab-scale installation equipped with a 3.5 L semi-batch reactor and a condensation and collection system for the liquids and gases generated. In the present thesis, an experimental study on the conventional pyrolysis process applied to the aforementioned waste fractions has been conducted, as well as the study of non-conventional or advanced pyrolysis processes such as catalytic and stepwise pyrolysis. The study of the operating parameters has been carried out using a mixed plastics simulated sample, the composition of which is similar to that found in real fractions, and subsequently the optimized process has been applied to real packaging waste. An exhaustive characterization of the solids, liquids and gases obtained in the process has been made after each experiment and their potential uses have been established. Finally, an empirical model that will predict the pyrolysis yields (% organic liquid, % aqueous liquid, % gases, % char, % inorganic solid) as a function of the composition of the initial sample has been developed. As a result of the experimental work done, the requirements have been established for an industrial packaging waste pyrolysis plant that aims to be sufficiently versatile as to generate useful products regardless of the nature of the raw material.