922 resultados para vapor coating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot Dip Aluminized Coatings with different thickness were prepared on Q235 steel in aluminum solutions with different temperature for certain time. Through tensile tests and in-situ SEM observations, the effect of the coating's microstructure on the tensile strength of the samples was studied. It was disclosed at certain aluminum solution temperature,transaction layers mainly composed of Fe2 Al5 phase got thicker with time prolonging, and this changed initial crack's extending direction from parallel with to vertical with stretching direction. The change in crack direction decreased tensile strength of samples, thus made the coating easy to break. It was concluded that the existence of thick Fe2 Al5 phase layer was the basic reason for the lowering of tensile strength of the coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon carbide bulk crystals were grown in an induction-heating furnace using the physical vapor transport method. Crystal growth modeling was performed to obtain the required inert gas pressure and temperatures for sufficiently large growth rates. The SiC crystals were expanded by designing a growth chamber having a positive temperature gradient along the growth interface. The obtained 6H-SiC crystals were cut into wafers and characterized by Raman scattering spectroscopy and X-ray diffraction, and the results showed that most parts of the crystals had good crystallographic structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22(nd) Chinese recoverable satellite. The fluid is R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30mm in length is simultaneously used as heater and thermometer. Only the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. A scale analysis on the Marangoni convection surrounding a bubble in the process of subcooled nucleate pool boiling leads to formulas of the characteristic velocity of the lateral motion and its observability. The predictions consist with the experimental observations. Considering the Marangoni effect, a new qualitative model is proposed to reveal the mechanism underlying the bubble departure processes and a quantitative agreement can also be acquired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of the interfacial adhesion of coating system has always been a rough task. In this paper, a special testing method of cross-sectional indentation is applied on a model coating system, i.e. electroplated chromium on a steel substrate which is generally regarded as an example of materials pair with strong adhesion. Based on fractography analysis with SEM and interfacial stress simulation with FEM, it is found that interfacial shear stress may induce coating spalling. More interestingly, spalling location is sensitive to substrate pretreatment process. This shows the feasibility of cross-sectional indentation to distinguish interfacial strength at a high level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials with interpenetrating network structures usually exhibit unexpected merit due to the cooperative interaction. Locally resonant phononic crystals (LRPC) exhibit excellent sound attenuation performance based on a periodical arrangement of sound wave scatters. Inspired by the interpenetrating network structure and the LRPC concept, we develop a locally network anechoic coating (LNAC) that can achieve a wide band of underwater strong acoustic absorption. The experimental results show that the LNAC possesses an excellent underwater acoustic absorbing capacity in a wide frequency range. Moreover, in order to investigate the impact of the interpenetrating network structure, we fabricate a faultage structure sample and the network is disconnected by hard polyurethane (PU). The experimental comparison between the LNAC and the faultage structure sample shows that the interpenetrating network structure of the LNAC plays an important role in achieving a wide band strong acoustic absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rayleigh-Marangoni-B,nard instability in a system consisting of a horizontal liquid layer and its own vapor has been investigated. The two layers are separated by a deformable evaporation interface. A linear stability analysis is carried out to study the convective instability during evaporation. In previous works, the interface is assumed to be under equilibrium state. In contrast with previous works, we give up the equilibrium assumption and use Hertz-Knudsen's relation to describe the phase change under non-equilibrium state. The influence of Marangoni effect, gravitational effect, degree of non-equilibrium and the dynamics of the vapor on the instability are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inducement of interface fracture is crucial to the analysis of interfacial adhesion between coating and substrate. For electroplated coating/metal substrate adhering materials with strong adhesion, interface cracking and coating spalling are difficult to be induced by conventional methods. In this paper an improved bending test named as T-bend test was conducted on a model coating system, i.e. electroplated chromium on a steel substrate. After the test, cross-sections of the coated materials were prepared to compare the failure behaviors under tensile strain and compressive strain induced by T-bend test. And the observation results show that coating cracking, interface cracking and partial spalling appear step by step. Based on experimental results, a new method may be proposed to rank the coated materials with strong inter-facial adhesion. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the thermally induced cracking behavior of a segmented coating has been investigated. The geometry under consideration is a hollow cylinder with a segmented coating deposited onto its outer surface. The segmentation cracks are modeled as a periodic array of axial edge cracks. The finite element method is utilized to obtain the solution of the multiple crack problem and the Thermal Stress Intensity Factors (TSIFs) are calculated. Based on dimensional analysis, the main parameters affecting TSIFs are identified. It has been found that the TSIF is a monotonically increasing function of segmentation crack spacing. This result confirms that a segmented coating exhibits much higher thermal shock resistance than an intact counterpart, if only the segmentation crack spacing is narrow enough. The dependence of TSIF on some other parameters, such as normalized time, segmentation crack depth, convection severity as well as material constants, has also been discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, dry chemical modification methods involving UV/ozone, oxygen plasma, and vacuum annealing treatments are explored to precisely control the wettability of CNT arrays. By varying the exposure time of these treatments the surface concentration of oxygenated groups adsorbed on the CNT arrays can be controlled. CNT arrays with very low amount of oxygenated groups exhibit a superhydrophobic behavior. In addition to their extremely high static contact angle, they cannot be dispersed in DI water and their impedance in aqueous electrolytes is extremely high. These arrays have an extreme water repellency capability such that a water droplet will bounce off of their surface upon impact and a thin film of air is formed on their surface as they are immersed in a deep pool of water. In contrast, CNT arrays with very high surface concentration of oxygenated functional groups exhibit an extreme hydrophilic behavior. In addition to their extremely low static contact angle, they can be dispersed easily in DI water and their impedance in aqueous electrolytes is tremendously low. Since the bulk structure of the CNT arrays are preserved during the UV/ozone, oxygen plasma, and vacuum annealing treatments, all CNT arrays can be repeatedly switched between superhydrophilic and superhydrophobic, as long as their O/C ratio is kept below 18%.

The effect of oxidation using UV/ozone and oxygen plasma treatments is highly reversible as long as the O/C ratio of the CNT arrays is kept below 18%. At O/C ratios higher than 18%, the effect of oxidation is no longer reversible. This irreversible oxidation is caused by irreversible changes to the CNT atomic structure during the oxidation process. During the oxidation process, CNT arrays undergo three different processes. For CNT arrays with O/C ratios lower than 40%, the oxidation process results in the functionalization of CNT outer walls by oxygenated groups. Although this functionalization process introduces defects, vacancies and micropores opening, the graphitic structure of the CNT is still largely intact. For CNT arrays with O/C ratios between 40% and 45%, the oxidation process results in the etching of CNT outer walls. This etching process introduces large scale defects and holes that can be obviously seen under TEM at high magnification. Most of these holes are found to be several layers deep and, in some cases, a large portion of the CNT side walls are cut open. For CNT arrays with O/C ratios higher than 45%, the oxidation process results in the exfoliation of the CNT walls and amorphization of the remaining CNT structure. This amorphization process can be implied from the disappearance of C-C sp2 peak in the XPS spectra associated with the pi-bond network.

The impact behavior of water droplet impinging on superhydrophobic CNT arrays in a low viscosity regime is investigated for the first time. Here, the experimental data are presented in the form of several important impact behavior characteristics including critical Weber number, volume ratio, restitution coefficient, and maximum spreading diameter. As observed experimentally, three different impact regimes are identified while another impact regime is proposed. These regimes are partitioned by three critical Weber numbers, two of which are experimentally observed. The volume ratio between the primary and the secondary droplets is found to decrease with the increase of Weber number in all impact regimes other than the first one. In the first impact regime, this is found to be independent of Weber number since the droplet remains intact during and subsequent to the impingement. Experimental data show that the coefficient of restitution decreases with the increase of Weber number in all impact regimes. The rate of decrease of the coefficient of restitution in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Experimental data also show that the maximum spreading factor increases with the increase of Weber number in all impact regimes. The rate of increase of the maximum spreading factor in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Phenomenological approximations and interpretations of the experimental data, as well as brief comparisons to the previously proposed scaling laws, are shown here.

Dry oxidation methods are used for the first time to characterize the influence of oxidation on the capacitive behavior of CNT array EDLCs. The capacitive behavior of CNT array EDLCs can be tailored by varying their oxygen content, represented by their O/C ratio. The specific capacitance of these CNT arrays increases with the increase of their oxygen content in both KOH and Et4NBF4/PC electrolytes. As a result, their gravimetric energy density increases with the increase of their oxygen content. However, their gravimetric power density decreases with the increase of their oxygen content. The optimally oxidized CNT arrays are able to withstand more than 35,000 charge/discharge cycles in Et4NBF4/PC at a current density of 5 A/g while only losing 10% of their original capacitance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we describe an experiment on laser cooling of Rb-87 atoms directly from a vapor background in diffuse light. Diffuse light is produced in a ceramic integrating sphere by multiple scattering of two laser beams injected through multimode fibers. A probe beam, whose propagation direction is either horizontal or vertical, is used to detect cold atoms. We measured the absorption spectra of the cold atoms by scanning the frequency of the probe beam, and observed both the absorption signal and the time of flight signal after we switched off the cooling light, from which we estimated the temperature and the number of cold atoms. This method is clearly attractive for building a compact cold atom clock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi criar uma metodologia de validação e revalidação dos processos de esterilização por calor úmido em autoclaves horizontais, destacando os pontos críticos do processo e concentrando esforços onde são realmente necessários. Foram realizados estudos de distribuição térmica, de penetração de calor e de desafio microbiológico na validação da autoclave STERIS FINNAQUA 6912. Com o objetivo de avaliar o impacto de uma mudança e compreender a relação entre os fatores e suas interações para o processo de esterilização, foi utilizado o planejamento fatorial 23 dos fatores densidade da carga (quantidade de itens), embalagem do produto e localização na câmara interna. Os estudos de distribuição térmica confirmaram a distribuição homogênea de calor na câmara interna durante o tempo de exposição a 121C. As temperaturas variaram entre 120,35C e 120,92C com desvio padrão máximo de 0,12C. Os estudos de penetração de calor confirmaram exposições equivalentes a 121C por 24 minutos em todos os itens da carga (F0 > 24 minutos). Em todos os estudos para cargas secas, os índices de capacidade do processo (Cpk) foram maiores que 1,33. Os ensaios de desafio microbiológico garantiram níveis de esterilidade (S.A.L.) maiores que 12 reduções logarítmicas em relação aos indicadores biológicos Geobacillus stearothermophilus. Não foi detectada a presença de endosporos sobreviventes nos 132 indicadores biológicos utilizados nos quatro ciclos desafiados. Com base no planejamento experimental verificou-se que, para o nível de significância de 95% , as mudanças nos fatores posição, embalagem e quantidade da carga não são significativas para o processo de esterilização, em autoclave com remoção forçada de ar. Já para o nível de significância de 90%, a interação Posição x Embalagem apresentou significância estatística no processo de esterilização com valor P de 0,080