990 resultados para unit disk graphs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V, E) with a non-negative weight function w on V such that Sigma(k)(i=1) max(v epsilon Ci) w(v(i)) is minimized, where C-1, ... , C-k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring abroad class of trees and show it can be solved in time O(vertical bar V vertical bar+time for sorting the vertex weights). When vertex weights belong to R, we show a matching lower bound of Omega(vertical bar V vertical bar log vertical bar V vertical bar) in the algebraic computation tree model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G - (V, E) be a weighted undirected graph having nonnegative edge weights. An estimate (delta) over cap (u, v) of the actual distance d( u, v) between u, v is an element of V is said to be of stretch t if and only if delta(u, v) <= (delta) over cap (u, v) <= t . delta(u, v). Computing all-pairs small stretch distances efficiently ( both in terms of time and space) is a well-studied problem in graph algorithms. We present a simple, novel, and generic scheme for all-pairs approximate shortest paths. Using this scheme and some new ideas and tools, we design faster algorithms for all-pairs t-stretch distances for a whole range of stretch t, and we also answer an open question posed by Thorup and Zwick in their seminal paper [J. ACM, 52 (2005), pp. 1-24].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dimensions of the ester unit, which is a component of the depsipeptide unit has been obtained by analysing the data on crystal structures of compounds having the ester unit. The dimensions indicate that this unit is slightly different from the peptide unit both as far as the bond length and bond angles are concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Reeb graph of a scalar function represents the evolution of the topology of its level sets. In this video, we describe a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Arcs in the Reeb graph are computed in the second step using a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The algorithm is also able to handle non-manifold domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The k-colouring problem is to colour a given k-colourable graph with k colours. This problem is known to be NP-hard even for fixed k greater than or equal to 3. The best known polynomial time approximation algorithms require n(delta) (for a positive constant delta depending on k) colours to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we look at the average performance of an algorithm rather than its worst-case performance. It is well known that a k-colourable graph drawn from certain classes of distributions can be ii-coloured almost surely in polynomial time. In this paper, we present further results in this direction. We consider k-colourable graphs drawn from the random model in which each allowed edge is chosen independently with probability p(n) after initially partitioning the vertex set into ii colour classes. We present polynomial time algorithms of two different types. The first type of algorithm always runs in polynomial time and succeeds almost surely. Algorithms of this type have been proposed before, but our algorithms have provably exponentially small failure probabilities. The second type of algorithm always succeeds and has polynomial running time on average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work as long as p(n) greater than or equal to n(-1+is an element of) where is an element of is a constant greater than 1/4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A k-dimensional box is the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval oil the real line of the form a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V, E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The domination and Hamilton circuit problems are of interest both in algorithm design and complexity theory. The domination problem has applications in facility location and the Hamilton circuit problem has applications in routing problems in communications and operations research.The problem of deciding if G has a dominating set of cardinality at most k, and the problem of determining if G has a Hamilton circuit are NP-Complete. Polynomial time algorithms are, however, available for a large number of restricted classes. A motivation for the study of these algorithms is that they not only give insight into the characterization of these classes but also require a variety of algorithmic techniques and data structures. So the search for efficient algorithms, for these problems in many classes still continues.A class of perfect graphs which is practically important and mathematically interesting is the class of permutation graphs. The domination problem is polynomial time solvable on permutation graphs. Algorithms that are already available are of time complexity O(n2) or more, and space complexity O(n2) on these graphs. The Hamilton circuit problem is open for this class.We present a simple O(n) time and O(n) space algorithm for the domination problem on permutation graphs. Unlike the existing algorithms, we use the concept of geometric representation of permutation graphs. Further, exploiting this geometric notion, we develop an O(n2) time and O(n) space algorithm for the Hamilton circuit problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exact solution of the unsteady Navier-Stokes equations is obtained for the flow due to non-coaxial rotations of a porous disk, executing non-torsional oscillations in its own plane, and a fluid at infinity. It is shown that the infinite number of solutions existing for a flow confined between two disks reduce to a single unique solution in the case of a single disk. The adjustment of the unsteady flow near the rotating disk to the flow at infinity rotating about a different axis is explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on unit cohesion has shown positive correlations between cohesion and valued outcomes such as strong performance, reduced stress, less indiscipline, and high re-enlistment intentions. However, the correlations have varied in strength and significance. The purpose of this study is to show that taking into consideration the multi-component nature of cohesion and relating the most applicable components to specific outcomes could resolve much of the inconsistency. Unit cohesion is understood as a process of social integration among members of a primary group with its leaders, and with the larger secondary groups of which they are a part. Correspondingly, included in the framework are four bonding components: horizontal (peer) and vertical (subordinate and leader) and organizational and institutional, respectively. The data were collected as part of a larger research project on cohesion, leadership, and personal adjustment to the military. In all, 1,534 conscripts responded to four questionnaires during their service in 2001-2002. In addition, sociometric questionnaires were given to 537 group members in 47 squads toward the end of their service. The results showed that platoons with strong primary-group cohesion differed from other platoons in terms of performance, training quality, secondary-group experiences, and attitudes toward refresher training. On the sociometric level it was found that soldiers who were chosen as friends by others were more likely to have higher expected performance, better performance ratings, more positive attitudes toward military service, higher levels of well-being during conscript service, and fewer exemptions from duty during it. On the group level, the selection of the respondents own group leader rather than naming a leader from outside (i.e., leader bonding) had a bearing not only on cohesion and performance, but also on the social, attitudinal, and behavioral criteria. Overall, the aim of the study was to contribute to the research on cohesion by introducing a model that takes into account the primary foci of bonding and their impact. The results imply that primary-group and secondary-group bonding processes are equally influential in explaining individual and group performance, whereas the secondary-group bonding components are far superior in explaining career intentions, personal growth, avoidance of duty, and attitudes toward refresher training and national defense. This should be considered in the planning and conducting of training. The main conclusion is that the different types of cohesion components have a unique, positive, significant, but varying impact on a wide range of criteria, confirming the need to match the components with the specific criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R-d, d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spanning tree T of a graph G is said to be a tree t-spanner if the distance between any two vertices in T is at most t times their distance in G. A graph that has a tree t-spanner is called a tree t-spanner admissible graph. The problem of deciding whether a graph is tree t-spanner admissible is NP-complete for any fixed t >= 4 and is linearly solvable for t <= 2. The case t = 3 still remains open. A chordal graph is called a 2-sep chordal graph if all of its minimal a - b vertex separators for every pair of non-adjacent vertices a and b are of size two. It is known that not all 2-sep chordal graphs admit tree 3-spanners This paper presents a structural characterization and a linear time recognition algorithm of tree 3-spanner admissible 2-sep chordal graphs. Finally, a linear time algorithm to construct a tree 3-spanner of a tree 3-spanner admissible 2-sep chordal graph is proposed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any pair of non-adjacent vertices forms a non-edge in a graph. Contraction of a non-edge merges two non-adjacent vertices into a single vertex such that the edges incident on the non-adjacent vertices are now incident on the merged vertex. In this paper, we consider simple connected graphs, hence parallel edges are removed after contraction. The minimum number of nodes whose removal disconnects the graph is the connectivity of the graph. We say a graph is k-connected, if its connectivity is k. A non-edge in a k-connected graph is contractible if its contraction does not result in a graph of lower connectivity. Otherwise the non-edge is non-contractible. We focus our study on non-contractible non-edges in 2-connected graphs. We show that cycles are the only 2-connected graphs in which every non-edge is non-contractible. (C) 2010 Elsevier B.V. All rights reserved.