910 resultados para uniform energy distribution
Resumo:
Inductively coupled radio-frequency plasmas can be operated in two distinct modes. At low power and comparatively low plasma densities the plasma is sustained in capacitive mode (E-mode). As the plasma density increases a transition to inductive mode (H-mode) is observed. This transition region is of particular interest and governed by non-linear dynamics, which under certain conditions results in structure formation with strong spatial gradients in light emission. These modes show pronounced differences is various measureable quantities e.g. electron densities, electron energy distribution functions, ion energy distribution functions, dynamics of optical light emission. Here the transition from E- to H- mode in an oxygen containing inductively coupled plasma (ICP) is investigated using space and phase resolved optical emission spectroscopy (PROES). The emission, measured phase resolved, allows investigation of the electron dynamics within the rf cycle, important for understanding the power coupling and ionization mechanisms in the discharge. The temporal variation of the emission reflects the dynamics of relatively high-energy electrons. It is possible to distinguish between E- and H-mode from the intensity and temporal behaviour of the emission.
Resumo:
We present results of wavepacket simulations for multiphoton ionization in argon. A single active electron model is applied to estimate the single-electron ionization rates and photoelectron energy distributions for lambda = 390 nm light with intensities up to I = 2 x 10(14) W cm(-2). The multiphoton ionization rates are compared with R-matrix Floquet calculations and found to be in very good agreement. The photoelectron energy distribution is used to study the nature of ionization at the higher intensities. Our results are consistent with recent calculations and experiments which show the imprint of the tunnelling process in the multiphoton regime. For few-cycle intense pulses, we find that the strong modulation of intensity and increased bandwidth leads to dynamic mixing of the 3d and 5s resonances.
Resumo:
We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in the nearby galaxy NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a long photon diffusion time and a high-density circumstellar medium. Its bolometric luminosity (similar or equal to 10(41) erg s(-1) at peak) is low with respect to most core-collapse supernovae but is comparable to the faintest Type II-P events. Our quasi-bolometric light curve extends to 300 d and shows a tail phase decay rate consistent with that of Co-56. We propose that this is evidence for an explosion and formation of Ni-56 (0.0014 +/- 0.0003 M-circle dot). Spectra of SN 2008S show intense emission lines of H alpha, [Ca II] doublet and Ca II near-infrared (NIR) triplet, all without obvious P-Cygni absorption troughs. The large mid-infrared (MIR) flux detected shortly after explosion can be explained by a light echo from pre-existing dust. The late NIR flux excess is plausibly due to a combination of warm newly formed ejecta dust together with shock-heated dust in the circumstellar environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90 AU and outer radius of 450 AU, and an inferred heating source of 3000 K. The luminosity of the central star is L similar or equal to 10(4.6) L-circle dot. All the nearby progenitor dust was likely evaporated in the explosion leaving only the much older dust lying further out in the circumstellar environment. The combination of our long-term multiwavelength monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron-capture supernova explosion in a super-asymptotic giant branch progenitor star (of initial mass 6-8 M-circle dot) embedded within a thick circumstellar gaseous envelope. We suggest that all of main properties of the electron-capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.
Resumo:
Diagnostic-based modeling (DBM) actively combines complementary advantages of numerical plasma simulations and relatively simple optical emission spectroscopy (OES). DBM is applied to determine spatial absolute atomic oxygen ground-state density profiles in a micro atmospheric-pressure plasma jet operated in He–O2. A 1D fluid model with semi-kinetic treatment of the electrons yields detailed information on the electron dynamics and the corresponding spatio-temporal electron energy distribution function. Benchmarking this time- and space-resolved simulation with phase-resolved OES (PROES) allows subsequent derivation of effective excitation rates as the basis for DBM. The population dynamics of the upper O(3p3P) oxygen state (? = 844 nm) is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through tracer comparison with the upper Ar(2p1) state (? = 750.4 nm). The resulting spatial profile for the absolute atomic oxygen density shows an excellent quantitative agreement to a density profile obtained by two-photon absorption laser-induced fluorescence spectroscopy.
Resumo:
We present mid-infrared (MIR) observations of the Type II-plateau supernova (SN) 2004et, obtained with the Spitzer Space Telescope between 64 and 1406 days past explosion. Late-time optical spectra are also presented. For the period 300-795 days past explosion, we argue that the spectral energy distribution (SED) of SN 2004et comprises (1) a hot component due to emission from optically thick gas, as well as free-bound radiation; (2) a warm component due to newly formed, radioactively heated dust in the ejecta; and (3) a cold component due to an IR echo from the interstellar-medium dust of the host galaxy, NGC 6946. There may also have been a small contribution to the IR SED due to free-free emission from ionized gas in the ejecta. We reveal the first-ever spectroscopic evidence for silicate dust formed in the ejecta of a supernova. This is supported by our detection of a large, but progressively declining, mass of SiO. However, we conclude that the mass of directly detected ejecta dust grew to no more than a few times 10(-4) M-circle dot. We also provide evidence that the ejecta dust formed in comoving clumps of fixed size. We argue that, after about two years past explosion, the appearance of wide, box-shaped optical line profiles was due to the impact of the ejecta on the progenitor circumstellar medium and that the subsequent formation of a cool, dense shell was responsible for a later rise in the MIR flux. This study demonstrates the rich, multifaceted ways in which a typical core-collapse supernova and its progenitor can produce and/or interact with dust grains. The work presented here adds to the growing number of studies that do not support the contention that SNe are responsible for the large mass of observed dust in high-redshift galaxies.
Resumo:
A new method of sol-gel polymer template synthesis of mesoporous catalytic thin films has been proposed which allows controlling the chemical nature of the film, the porosity, thickness and loading with an active species. The mesoporous films with a long-order structure can be obtained in a narrow range of surfactant-to-metal precursor molar ratios from 0.006 to 0.009. The catalytic film thickness was varied from 300 to 1000 nm while providing a uniform catalyst distribution with a desired catalyst loading (1 wt. % Au nanoparticles) throughout the film. The films were characterized by TEM, SEM, ethanol adsorption and contact angle measurements. The calcination of the as-synthesized films at 573 K reduced Ti4+ sites to Ti3+. A 300 nm thick Au-containing film showed an initial TOF of 1.4 s(-1) and a selectivity towards unsaturated alcohols as high as 90% in the hydrogenation of citral. Thicker films demonstrated a high selectivity towards the saturated aldehyde (above 55%) and a lower intrinsic catalytic activity (initial TOF of 0.7-0.9 s(-1)) in the absence of internal diffusion limitations.
Resumo:
The interaction of an ultraintense laser pulse with a conical target is studied by means of numerical particle-in-cell simulations in the context of fast ignition. The divergence of the fast electron beam generated at the tip of the cone has been shown to be a crucial parameter for the efficient coupling of the ignition laser pulse to the precompressed fusion pellet. In this paper, we demonstrate that a focused hot electron beam is produced at the cone tip, provided that electron currents flowing along the surfaces of the cone sidewalls are efficiently generated. The influence of various interaction parameters over the formation of these wall currents is investigated. It is found that the strength of the electron flows is enhanced for high laser intensities, low density targets, and steep density gradients inside the cone. The hot electron energy distribution obeys a power law for energies of up to a few MeV, with the addition of a high-energy Maxwellian tail.
Resumo:
We present the discovery of two ultraluminous supernovae (SNe) at z approximate to 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M-bol approximate to -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10(51) erg. We find photospheric velocities of 12,000-19,000 km s(-1) with no evidence for deceleration measured across similar to 3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.
Resumo:
We report on the results of optical follow-up observations of the counterpart of the gamma-ray burst GRB 970508, starting 7 hr after the event. Multicolor U-, B-, V-, R-c-, and I-c-band observations were obtained during the first three consecutive nights. The counterpart was monitored regularly in R-c, until similar to 4 months after the burst. The light curve after the maximum follows a decline that can be fitted with a power law with exponent alpha = -1.141 +/- 0.014. Deviations from a smooth power-law decay are moderate (rms = 0.15 mag). We find no flattening of the light curve at late times. The optical afterglow fluence is a significant fraction, similar to 5%, of the GRB fluence. The optical energy distribution can be well represented by a power law, the slope of which changed at the time of the maximum (the spectrum became redder).
Resumo:
A time-resolved Langmuir probe technique is used to measure the dependence of the electron density, electron temperature, plasma potential and electron energy distribution function (EEDF) on the phase of the driving voltage in a RF driven parallel plate discharge. The measurements were made in a low-frequency (100-500 kHz), symmetrically driven, radio frequency discharge operating in H-2, D-2 and Ar at gas pressures of a few hundred millitorr. The EEDFs could not be represented by a single Maxwellian distribution and resembled the time averaged EEDFs reported in 13.56 MHz discharges. The measured parameters showed structure in their spatial and temporal dependence, generally consistent with a simple oscillating sheath model. Electron temperatures of less than 0.1 eV were measured during the phase of the RF cycle when both electrodes are negative with respect to the plasma.
Resumo:
In this paper we demonstrate a new concept in the production of negative hydrogen ions in a low-pressure multicusp discharge. The discharge voltage is modulated to produce a non-Maxwellian, hot-electron plasma during the current pulse, followed by a cool Maxwellian electron plasma in the post discharge. This procedure, of separating in time the required hot and cold electron plasmas required for volume H- production, is called a temporal filter. The time evolution of the electron energy distribution function is measured using the time-resolved second derivative of a Langmuir probe characteristic. Time-resolved measurements of the negative ion density are made using laser photodetachment. The measurements show that the negative ion density in the center of the source, at a gas pressure of 0.07 Pa, increases by a factor of 2 when the discharge is switched off. At this low pressure the average H- beam current extracted from the source, when operated with a discharge current of 1 A in the pulse modulated mode exceeds the H- beam current from a 5 A continuously operated source. The increase in efficiency of the pulsed source is explained in terms of a two-step H- production mechanism.
Resumo:
The zero-range potential model is used to investigate positron collisions and annihilation with molecules. The Kr dimer is considered as an example. It is shown that (i) although positrons do not bind to individual Kr atoms, they do form bound states with Kr. (ii) A sequence of vibrationally excited states of the positron-molecule complex extends into the positron continuum, where it manifests as vibrational Feshbach resonances. (iii) These resonances give a very large contribution to the positron annihilation rate. Even after averaging over the thermal positron energy distribution, the contribution of the lowest Feshbach resonance exceeds that of the non-resonant background by an order of magnitude. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Gas-liquid processing in microreactors remains mostly restricted to the laboratory scale due to the complexity and expenditure needed for an adequate numbering-up with a uniform flow distribution. Here, the numbering-up is presented for multi-phase (gas-liquid) flow in microreactor suitable for a production capacity of kg/h. Based on the barrier channels concept, the barrier-based micro/milli reactor (BMMR) is designed and fabricated to deliver flow non-uniformity of less than 10%. The BMMR consists of eight parallel channels all operated in the Taylor flow regime and with a liquid flow rate up to 150. mL/min. The quality of the flow distribution is reported by studying two aspects. The first aspect is the influence of different viscosities, surface tensions and flow rates. The second aspect is the influence of modularity by testing three different reaction channels type: (1) square channels fabricated in a stainless steel plate, (2) square channels fabricated in a glass plate, and (3) circular channels (capillaries) made of stainless steel. Additionally, the BMMR is compared to that of a single channel regard the slug and bubble lengths and bubble generation frequency. The results pave the ground for bringing multi-phase flow in microreactor one step closer for large scale production via numbering-up. © 2012 Elsevier B.V.
Resumo:
Thermal management as a method of heightening performance in miniaturized electronic devices using microchannel heat sinks has recently become of interest to researchers and the industry. One of the current challenges is to design heat sinks with uniform flow distribution. A number of experimental studies have been conducted to seek appropriate designs for microchannel heat sinks. However, pursuing this goal experimentally can be an expensive endeavor. The present work investigates the effect of cross-links on adiabatic two-phase flow in an array of parallel channels. It is carried out using the three dimensional mixture model from the computational fluid dynamics software, FLUENT 6.3. A straight channel and two cross-linked channel models were simulated. The cross-links were located at 1/3 and 2/3 of the channel length, and their widths were one and two times larger than the channel width. All test models had 45 parallel rectangular channels, with a hydraulic diameter of 1.59 mm. The results showed that the trend of flow distribution agrees with experimental results. A new design, with cross-links incorporated, was proposed and the results showed a significant improvement of up to 55% on flow distribution compared with the standard straight channel configuration without a penalty in the pressure drop. Further discussion about the effect of cross-links on flow distribution, flow structure, and pressure drop was also documented.
Resumo:
We present nine near-infrared (NIR) spectra of supernova (SN) 2005cf at epochs from -10 to +42d with respect to B-band maximum, complementing the existing excellent data sets available for this prototypical Type Ia SN at other wavelengths. The spectra show a time evolution and spectral features characteristic of normal Type Ia SNe, as illustrated by a comparison with SNe 1999ee, 2002bo and 2003du. The broad-band spectral energy distribution (SED) of SN 2005cf is studied in combined ultraviolet (UV), optical and NIR spectra at five epochs between ~8d before and ~10d after maximum light. We also present synthetic spectra of the hydrodynamic explosion model W7, which reproduce the key properties of SN 2005cf not only at UV-optical as previously reported, but also at NIR wavelengths. From the radiative-transfer calculations we infer that fluorescence is the driving mechanism that shapes the SED of SNe Ia. In particular, the NIR part of the spectrum is almost devoid of absorption features, and instead dominated by fluorescent emission of both iron-group material and intermediate-mass elements at pre-maximum epochs, and pure iron-group material after maximum light. A single P-Cygni feature of Mgii at early epochs and a series of relatively unblended Coii lines at late phases allow us to constrain the regions of the ejecta in which the respective elements are abundant. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.