996 resultados para turbulent jet flames
Resumo:
Theoretical and experimental studies were made on two classes of buoyant jet problems, namely:
1) an inclined, round buoyant yet in a stagnant environment with linear density-stratification;
2) a round buoyant jet in a uniform cross stream of homogenous density.
Using the integral technique of analysis, assuming similarity, predictions can be made for jet trajectory, widths, and dilution ratios, in a density-stratified or flowing environment. Such information is of great importance in the design of disposal systems for sewage effluent into the ocean or waste gases into the atmosphere.
The present study of a buoyant jet in a stagnant environment has extended the Morton type of analysis to cover the effect of the initial angle of discharge. Numerical solutions have been presented for a range of initial conditions. Laboratory experiments were conducted for photographic observations of the trajectories of dyed jets. In general the observed jet forms agreed well with the calculated trajectories and nominal half widths when the value of the entrainment coefficient was taken to be α = 0.082, as previously suggested by Morton.
The problem of a buoyant jet in a uniform cross stream was analyzed by assuming an entrainment mechanism based upon the vector difference between the characteristic jet velocity and the ambient velocity. The effect of the unbalanced pressure field on the sides of the jet flow was approximated by a gross drag term. Laboratory flume experiments with sinking jets which are directly analogous to buoyant jets were performed. Salt solutions were injected into fresh water at the free surface in a flume. The jet trajectories, dilution ratios and jet half widths were determined by conductivity measurements. The entrainment coefficient, α, and drag coefficient, Cd, were found from the observed jet trajectories and dilution ratios. In the ten cases studied where jet Froude number ranged from 10 to 80 and velocity ratio (jet: current) K from 4 to 16, α varied from 0.4 to 0.5 and Cd from 1.7 to 0.1. The jet mixing motion for distance within 250D was found to be dominated by the self-generated turbulence, rather than the free-stream turbulence. Similarity of concentration profiles has also been discussed.
Resumo:
The purpose of this thesis is to characterize the behavior of the smallest turbulent scales in high Karlovitz number (Ka) premixed flames. These scales are particularly important in the two-way coupling between turbulence and chemistry and better understanding of these scales will support future modeling efforts using large eddy simulations (LES). The smallest turbulent scales are studied by considering the vorticity vector, ω, and its transport equation.
Due to the complexity of turbulent combustion introduced by the wide range of length and time scales, the two-dimensional vortex-flame interaction is first studied as a simplified test case. Numerical and analytical techniques are used to discern the dominate transport terms and their effects on vorticity based on the initial size and strength of the vortex. This description of the effects of the flame on a vortex provides a foundation for investigating vorticity in turbulent combustion.
Subsequently, enstrophy, ω2 = ω • ω, and its transport equation are investigated in premixed turbulent combustion. For this purpose, a series of direct numerical simulations (DNS) of premixed n-heptane/air flames are performed, the conditions of which span a wide range of unburnt Karlovitz numbers and turbulent Reynolds numbers. Theoretical scaling analysis along with the DNS results support that, at high Karlovitz number, enstrophy transport is controlled by the viscous dissipation and vortex stretching/production terms. As a result, vorticity scales throughout the flame with the inverse of the Kolmogorov time scale, τη, just as in homogeneous isotropic turbulence. As τη is only a function of the viscosity and dissipation rate, this supports the validity of Kolmogorov’s first similarity hypothesis for sufficiently high Ka numbers (Ka ≳ 100). These conclusions are in contrast to low Karlovitz number behavior, where dilatation and baroclinic torque have a significant impact on vorticity within the flame. Results are unaffected by the transport model, chemical model, turbulent Reynolds number, and lastly the physical configuration.
Next, the isotropy of vorticity is assessed. It is found that given a sufficiently large value of the Karlovitz number (Ka ≳ 100) the vorticity is isotropic. At lower Karlovitz numbers, anisotropy develops due to the effects of the flame on the vortex stretching/production term. In this case, the local dynamics of vorticity in the strain-rate tensor, S, eigenframe are altered by the flame. At sufficiently high Karlovitz numbers, the dynamics of vorticity in this eigenframe resemble that of homogeneous isotropic turbulence.
Combined, the results of this thesis support that both the magnitude and orientation of vorticity resemble the behavior of homogeneous isotropic turbulence, given a sufficiently high Karlovitz number (Ka ≳ 100). This supports the validity of Kolmogorov’s first similarity hypothesis and the hypothesis of local isotropy under these condition. However, dramatically different behavior is found at lower Karlovitz numbers. These conclusions provides/suggests directions for modeling high Karlovitz number premixed flames using LES. With more accurate models, the design of aircraft combustors and other combustion based devices may better mitigate the detrimental effects of combustion, from reducing CO2 and soot production to increasing engine efficiency.
Resumo:
Progress in simulating chevron nozzle jet flows using ILES/RANS-ILES approaches and using the Ffowcs Williams and Hawkings (FW-H) surface integral method to predict the radiated far field sound is presented in this paper. With the focus on the realistic chevron geometries, SMC001 and SMC006, coarse and fine meshes are generated in the range of 3∼13 million mesh cells. Throughout this work, to minimize numerical dissipation introduced by mesh quality issues, the hexahedral cell type is used. Numerical simulations are then carried out with cell-vertex and cell-centered codes. Despite the modest grids, mean velocities and turbulent statistics are found to be in reasonable accord with measurements. Also, far field sound levels predicted by the FW-H post processor are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
This paper deals with the experimental evaluation of a flow analysis system based on the integration between an under-resolved Navier-Stokes simulation and experimental measurements with the mechanism of feedback (referred to as Measurement-Integrated simulation), applied to the case of a planar turbulent co-flowing jet. The experiments are performed with inner-to-outer-jet velocity ratio around 2 and the Reynolds number based on the inner-jet heights about 10000. The measurement system is a high-speed PIV, which provides time-resolved data of the flow-field, on a field of view which extends to 20 jet heights downstream the jet outlet. The experimental data can thus be used both for providing the feedback data for the simulations and for validation of the MI-simulations over a wide region. The effect of reduced data-rate and spatial extent of the feedback (i.e. measurements are not available at each simulation time-step or discretization point) was investigated. At first simulations were run with full information in order to obtain an upper limit of the MI-simulations performance. The results show the potential of this methodology of reproducing first and second order statistics of the turbulent flow with good accuracy. Then, to deal with the reduced data different feedback strategies were tested. It was found that for small data-rate reduction the results are basically equivalent to the case of full-information feedback but as the feedback data-rate is reduced further the error increases and tend to be localized in regions of high turbulent activity. Moreover, it is found that the spatial distribution of the error looks qualitatively different for different feedback strategies. Feedback gain distributions calculated by optimal control theory are presented and proposed as a mean to make it possible to perform MI-simulations based on localized measurements only. So far, we have not been able to low error between measurements and simulations by using these gain distributions.
Resumo:
To calculate the noise emanating from a turbulent flow using an acoustic analogy knowledge concerning the unsteady characteristics of the turbulence is required. Specifically, the form of the turbulent correlation tensor together with various time and length-scales are needed. However, if a Reynolds Averaged Navier-Stores calculation is used as the starting point then one can only obtain steady characteristics of the flow and it is necessary to model the unsteady behavior in some way. While there has been considerable attention given to the correct way to model the form of the correlation tensor less attention has been given to the underlying physics that dictate the proper choice of time-scale. In this paper the authors recognize that there are several time dependent processes occurring within a turbulent flow and propose a new way of obtaining the time-scale. Isothermal single-stream flow jets with Mach numbers 0.75 and 0.90 have been chosen for the present study. The Mani-Gliebe-Balsa-Khavaran method has been used for prediction of noise at different angles, and there is good agreement between the noise predictions and observations. Furthermore, the new time-scale has an inherent frequency dependency that arises naturally from the underlying physics, thus avoiding supplementary mathematical enhancements needed in previous modeling.
Resumo:
Turbulent combustion of stoichiometric hydrogen-air mixture is simulated using direct numerical simulation methodology, employing complex chemical kinetics. Two flame configurations, freely propagating and V-flames stabilized behind a hot rod, are simulated. The results are analyzed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation processes. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to align with the most extensive strain in the region of intense heat release. The combustion in the rod stabilized flame is found to be flamelet like in an average sense and the growth of flame-brush thickness with the downstream distance is represented well by Taylor theory of turbulent diffusion, when the flame-brushes are non-interacting. The thickness is observed to saturate when the flame-brushes interact, which is found to occur in the simulated rod stabilized flame with Taylor micro-scale Reynolds number of 97. © 2011 American Institute of Physics.
Resumo:
DNS of planar turbulent flame and turbulent V-flame has been conducted to investigate turbulence-scalar interaction in relatively practical turbulent combustion. Several turbulence quantities are examined for the understandings of fundamental characteristics of flow field in V-flame. Due to the additional turbulence production by the hot-rod, turbulence does not simply decay in V-flame. Turbulence-scalar interaction, scalar alignments with the principal strain rate in other words, is then clarified. The competition of turbulence and dilatation can be found in the conditional PDF of flame normal alignment. The results suggests that the alignment characteristics in high Da flames are applicable to low Da flames in the region of intense heat release.
Resumo:
An algorithm to compute the silent base flow sources of sound in a jet is introduced. The algorithm is based on spatiotemporal filtering of the flow field and is applicable to multifrequency sources. It is applied to an axisymmetric laminar jet and the resulting sources are validated successfully. The sources are compared to those obtained from two classical acoustic analogies, based on quiescent and time-averaged base flows. The comparison demonstrates how the silent base flow sources shed light on the sound generation process. It is shown that the dominant source mechanism in the axisymmetric laminar jet is "shear-noise," which is a linear mechanism. The algorithm presented here could be applied to fully turbulent flows to understand the aerodynamic noise-generation mechanism.
Resumo:
The effects of stratification on a series of highly swirling turbulent flames under globally lean conditions (φg=0.75) are investigated using a new high-spatial resolution multi-scalar dataset. This dataset features two key properties: high spatial resolution which approaches the 60 micron optical limit of the measurement system, and a wavelet oversampling methodology which significantly reduces the influence of noise. Furthermore, the very large number of realizations (30,000) acquired in the stratified cases permits statistically significant results to be obtained even after aggressive conditioning is applied. Data are doubly conditioned on equivalence ratio and the degree of stratification across the flame in each instantaneous realization. The influence of stoichiometry is limited by conditioning on the equivalence ratio at the location of peak CO mass fraction, which is shown to be a good surrogate for the location of peak heat release rate, while the stratification is quantified using a linear gradient in equivalence ratio across the instantaneous flame front. This advanced conditioning enables robust comparisons with the baseline lean premixed flame. Species mass fractions of both carbon monoxide and hydrogen are increased in temperature space under stratified conditions. Stratification is also shown to significantly increase thermal gradients, yet the derived three-dimensional flame surface density is shown to be relatively insensitive to stratification. Whilst the presence of instantaneous stratification broadens the curvature distribution relative to the premixed case, the degree of broadening is not significantly influenced by the range of global stratification ratios examined in this study. © 2012 The Combustion Institute.
Resumo:
In this paper the radial free jet which is produced by a continuous discharge of fluid from the space between two identical, parallel, circular, concentric discs into an infinite region of stagnant fluid of the same density and viscosity is investigated. Both laminar and turbulent jets are considered with analytical solutions being obtained near to the origin of the jet and at large distances along the jet. These asymptotic solutions are matched using a computational technique, and the numerical predictions show very good agreement with all the available experimental data.
Resumo:
The influence of Lewis number on turbulent premixed flame interactions is investigated using automatic feature extraction (AFE) applied to high-resolution flame simulation data. Premixed turbulent twin V-flames under identical turbulence conditions are simulated at global Lewis numbers of 0.4, 0.8, 1.0, and 1.2. Information on the position, frequency, and magnitude of the interactions is compared, and the sensitivity of the results to sample interval is discussed. It is found that both the frequency and magnitude of normal type interactions increases with decreasing Lewis number. Counternormal type interactions become more likely as the Lewis number increases. The variation in both the frequency and the magnitude of the interactions is found to be caused by large-scale changes in flame wrinkling resulting from differences in the thermo-diffusive stability of the flames. During flame interactions, thermo-diffusive effects are found to be insignificant due to the separation of time scales. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The spray combustion characteristics of rapeseed methyl esters (RME) were compared to Jet-A1 fuel using a gas turbine type combustor. The swirling spray flames for both fuels were established at a constant power output of 6 kW. The main swirling air flow was preheated to 350 C prior to coaxially enveloping the airblast-atomized liquid fuel spray at atmospheric pressure. Investigation of the fundamental spray combustion was performed via measurements of the fuel droplet sizes and velocities, gas phase flow fields and flame reaction zones. The spray flame droplets and flow fields in the combustors were characterised using phase Doppler anemometry (PDA) and particle imaging velocimetry (PIV) respectively. Flame chemiluminescence imaging was employed to identify the flame reaction zones. The highest droplet concentration zone extends along a 30 angle from the symmetry axis, inside the flame zone. Only small droplets(<17 μ) (<17 μm)are found around the centreline region, while larger droplets are found at the edge of the spray outside the flame reaction zone. RME exhibits spray characteristics similar to Jet-A1 but with droplet concentration and volume fluxes four times higher, consistent with the expected longer droplet evaporation timescale. The flow field characteristics for both RME and Jet-A1 spray flames are very similar despite the significantly different visible characteristics of the flame reaction zones. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The ability of hydrodynamically self-excited jets to lock into strong external forcing is well known. Their dynamics before lock-in and the specific bifurcations through which they lock in, however, are less well known. In this experimental study, we acoustically force a low-density jet around its natural global frequency. We examine its response leading up to lock-in and compare this to that of a forced van der Pol oscillator. We find that, when forced at increasing amplitudes, the jet undergoes a sequence of two nonlinear transitions: (i) from periodicity to T{double-struck}2 quasiperiodicity via a torus-birth bifurcation; and then (ii) from T{double-struck}2 quasiperiodicity to 1:1 lock-in via either a saddle-node bifurcation with frequency pulling, if the forcing and natural frequencies are close together, or a torus-death bifurcation without frequency pulling, but with a gradual suppression of the natural mode, if the two frequencies are far apart. We also find that the jet locks in most readily when forced close to its natural frequency, but that the details contain two asymmetries: the jet (i) locks in more readily and (ii) oscillates more strongly when it is forced below its natural frequency than when it is forced above it. Except for the second asymmetry, all of these transitions, bifurcations and dynamics are accurately reproduced by the forced van der Pol oscillator. This shows that this complex (infinite-dimensional) forced self-excited jet can be modelled reasonably well as a simple (three-dimensional) forced self-excited oscillator. This result adds to the growing evidence that open self-excited flows behave essentially like low-dimensional nonlinear dynamical systems. It also strengthens the universality of such flows, raising the possibility that more of them, including some industrially relevant flames, can be similarly modelled. © 2013 Cambridge University Press.
Resumo:
This study develops a single-stream jet noise prediction model for a family of chevron nozzles. An original equation is proposed for the fourth-order space-time cross-correlations. They are expressed in flow parameters such as streamwise circulation and turbulent kinetic energy. The cross-correlations based on a Reynolds Averaged Navier-Stokes (RANS) flowfield showed a good agreement with those based on a Large Eddy Simulation (LES) flowfield. This proves that the proposed equation describes the cross-correlations accurately. With this novel source description, there is an excellent agreement between our model's far-field noise predictions and measurements1 for a wide range of frequencies and radiation angles. Our model captures the spectral shape, amplitude and peak frequency very well. This establishes that our model holds good for a family of chevron nozzles. As our model provides quick and accurate predictions, a parametric study was performed to understand the effects of a chevron nozzle geometry on jet noise and thrust loss. Chevron penetration is the underpinning factor for jet noise reduction. The reduction of jet noise per unit thrust loss decreases linearly with chevron penetration. The number of chevrons also has a considerable effect on jet noise.
Resumo:
The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce higher Nusselt numbers and effective heat transfer coefficients. Enhanced cooling efficiency enables the power electronics module to operate at a lower temperature, greatly enhancing long-term reliability. The results obtained through numerical modelling deviates markedly from the experimentally derived data. The disparity is most likely due to the turbulence model selected and further analysis is required, involving evaluation of more advanced turbulence models.