911 resultados para tree species richness and composition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenological observations on tree species in tropical moist forest of Uttara Kannada district (13ℴ55′ to 15ℴ31′ N lat; 74ℴ9′ to 75ℴ10′ E long) during the years 1983–1985 revealed that there exists a strong seasonality for leaf flush, leaf drop and reproduction. Young leaves were produced in the pre-monsoon dry period with a peak in February, followed by the expansion of leaves which was completed in March. Abscission of leaves occurred in the post-monsoon winter period with a peak in December. There were two peaks for flowering (December and March), while fruit ripening had a single peak in May–June, preceding the monsoon rainfall. The duration of maturation of leaves was the shortest, while that of full ripening of fruits was the longest. Mature flowers of evergreen species lasted longer than those of deciduous species; in contrast the phenophase of ripe fruits of deciduous species was longer than that of evergreen species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Recovery of rainforest bird community structure and composition, in relation to forest succession after slash-and-burn shifting cultivation or jhum was studied in Mizoram, north-east India. Replicate fallow sites abandoned after shifting cultivation 1, 5, 10, 25 and approximate to 100 years ago, were compared with primary evergreen and semi-evergreen forest using transect and quadrat sampling. 2. Vegetation variables such as woody plant species richness, tree density and vertical stratification increased with fallow age in a rapid. nun-linear, asymptotic manner. Principal components analysis of vegetation variables summarized 92.8% of the variation into two axes: PC1 reflecting forest development and woody plant succession (variables such as tree density, woody plant species richness), and PC2 depicting bamboo density, which increased from 1 to 25 years and declined thereafter. 3. Bird species richness, abundance and diversity, increased rapidly and asymptotically during succession paralleling vegetation recovery as shown by positive correlations with fallow age and PC1 scores of sites. Bamboo density reflected by PC2 had a negative effect on bird species richness and abundance. 4. The bird community similarity (Morisita index) of sites with primary forest also increased asymptotically with fallow age indicating sequential species turnover during succession. Bird community similarity of sites with primary forest (or between sites) was positively correlated with both physiognomic and floristic similarities with primary forest (or between sites). 5. The number of bird species in guilds associated with forest development and woody plants (canopy insectivores, frugivores: bark feeders) was correlated with PCI scores of the sites. Species in other guilds (e. g. granivores, understorey insectivores) appeared to dominate during early and mid-succession. 6. The non-linear relationships imply that fallow periods less than a threshold of 25 years for birds, and about 50-75 years for woody plants, are likely to cause substantial community alteration. 7. As 5-10-year rotation periods or jhum cycles prevail in many parts of north-east India. there is a need to protect and conserve tracts of late-successional and primary forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We build dynamic models of community assembly by starting with one species in our model ecosystem and adding colonists. We find that the number of species present first increases, then fluctuates about some level. We ask: how large are these fluctuations and how can we characterize them statistically? As in Robert May's work, communities with weaker interspecific interactions permit a greater number of species to coexist on average. We find that as this average increases, however, the relative variation in the number of species and return times to mean community levels decreases. In addition, the relative frequency of large extinction events to small extinction events decreases as mean community size increases. While the model reproduces several of May's results, it also provides theoretical support for Charles Elton's idea that diverse communities such as those found in the tropics should be less variable than depauperate communities such as those found in arctic or agricultural settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large animal species are prone to local extirpation, but ecologists cannot yet predict how the loss of megaherbivores affects ecosystem processes such as seed dispersal. Few studies have compared the quantity and quality of seed dispersal by megaherbivores versus alternative frugivores in the wild, particularly for plant species with fruit easily consumed by many frugivorous species. In a disturbed tropical moist forest in India, we examine whether megaherbivores are a major frugivore of two tree species with easily edible, mammal-dispersed fruit. We quantify the relative fruit removal rates of Artocarpus chaplasha and Careya arborea, by the Asian elephant (Elephas maximus) and alternative dispersers. Through focal watches and camera trapping, we found the elephant to be amongst the top three frugivores for each tree species. Furthermore, seed transects under A. chaplasha show that arboreal frugivores discard seeds only a short distance from the parental tree, underscoring the elephant's role as a long-distance disperser. Our data provide unprecedented support for an old notion: megaherbivores may be key dispersers for a broad set of mammal-dispersed fruiting species, and not just fruit inaccessible to smaller frugivores. As such, the elephant may be particularly important for the functional ecology of the disturbed forests it still inhabits across tropical Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, we present the structure and composition of tropical evergreen and deciduous forests in the Western Ghats monitored under a long-term programme involving Indian Institute of Science, Earthwatch and volunteer investigators from HSBC. Currently, there is limited evidence on the status and dynamics of tropical forests in the context of human disturbance and climate change. Observations made in this study show that the `more disturbed' evergreen and one of the deciduous plots have low species diversity compared to the less-disturbed forests. There are also variations in the size class structure in the more and `less disturbed' forests of all the locations. The variation is particularly noticeable in the DBH size class 10 - 15 cm category. When biomass stock estimates are considered, there was no significant difference between evergreen and deciduous forests. The difference in biomass stocks between `less disturbed' and `more disturbed' forests within a forest type is also low. Thus, the biomass and carbon stock has not been impacted despite the dependence of communities on the forests. Periodic and long-term monitoring of the status and dynamics of the forests is necessary in the context of potential increased human pressure and climate change. There is, therefore, a need to inform the communities of the impact of extraction and its effect on regeneration so as to motivate them to adopt what may be termed as ``adaptive resource management'', so as to sustain the flow of forest products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste estudo, investigamos a distribuição altitudinal da composição, riqueza, abundância das espécies de aves consumidoras de frutos em cinco altitudes e avaliamosa influência da estrutura da vegetação nas diversidades de aves. O estudo foi realizado na Reserva Ecológica de Guapiaçu (REGUA) contígua ao Parque Estadual dos Três Picos (PEPT), no município de Cachoeiras de Macacu, RJ. Coletamos os dados das aves em 24 excursões a campo, incluindo seis bimensais (jul./2010 a maio/2011) e 18 mensais (jul./2011 a dez./2012). Para amostragem das aves, utilizamos o método de captura-marcação-recaptura com redes de neblina, expostas durante sete h/dia em cinco altitudesao longo de uma variação altitudinal de 1000 m. O esforço amostral foi de 8400 h-rede. Para amostragem da estrutura da vegetação, sorteamos três parcelas de 100 m2 adjacentes às linhas das redes em cada altitude, nas quais foram analisadas as densidades de diferentes hábitos de vida. Das árvores, arvoretas e arbustos coletamos as medidas de altura total e diâmetro da altura (no caso dos arbustos, o diâmetro foi coletado a 50 cm do solo). Capturamos 448 indivíduos correspondentes a 35 espécies de aves, distribuídas em 16 famílias. Destas, 26% são endêmicas de Mata Atlântica, incluindo quatro espécies categorizadas com algum grau de vulnerabilidade. Dezesseis espécies foram classificadas como frugívoras enquanto 19 como insetívoras-frugívoras. Leptopogon amaurocephalus, Mionectes rufiventris, Lanio melanops, Chiroxiphia caudata foram capturadas nas cinco altitudes, sendo as últimas duas espécies as mais abundantes. Registramos maior riqueza e abundância de aves nas altitudes de 370 e 770 m. A composição de aves diferiu entre as altitudes, sendo 170 e 1000 m as mais dissimilares. As espécies de aves insetívoras-frugívoras predominaram nos sub-bosques das cinco altitudes. Registramos deslocamento altitudinal de cinco espécies de aves, sendo o maior deslocamento realizado por um indivíduo de Attilarufus, capturado a 770 m e, recapturado a 370 m. Encontramos maior densidade de plantas no sub-bosque nas altitudes 170, 370 e 1000 m. Bambus foram registrados apenas a 1000 m, enquanto que as ervas foram limitadas às altitudes de 170 e 370 m. A estrutura da vegetação apresentou baixa similaridade entre as altitudes, principalmente devido a diferentes densidades das formas de vida e altura das plantas. Três altitudes, 170, 370 e 1000 m, apresentaram alta densidade de indivíduos no sub-bosque, sendo que esta última evidenciou uma estrutura da vegetação relativamente mais simples devido ao alto número de árvores de baixa altura, ao maior número de arvoretas e à presença de bambus. A diversidade de aves foi sensível à estrutura da vegetação, em especial à altura das árvores que apresentou um decréscimo da altura com o aumento da altitude. Esta relação entre a diversidade de aves e a estruturada da vegetação destaca a importância da preservação da estrutura da vegetação para a manutenção da diversidade de aves consumidoras de frutos da REGUA e do PETP

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed data from National Marine Fisheries Service bottom trawl surveys carried out triennially from 1984 to 1996 in the Gulf of Alaska (GOA). The continental shelf and upper slope (0–500 m) of the GOA support a rich demersal fish fauna dominated by arrowtooth flounder (Atheresthes stomias), walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and Pacific Ocean perch (Sebastes alutus). Average catch per unit of effort (CPUE) of all groundfish species combined increased with depth and had a significant peak near the shelf break at 150–200 m. Species richness and diversity had significant peaks at 200–300 m. The western GOA was characterized by higher CPUEs and lower species richness and diversity than the eastern GOA. Highest CPUEs were observed in Shelikof Strait, along the shelf break and upper slope south of Kodiak Island, and on the banks and in the gullies northeast of Kodiak Island. Significant differences in total CPUE among surveys suggest a 40% increase in total groundfish biomass between 1984 and 1996. A multivariate analysis of the CPUE of 72 groundfish taxa revealed strong gradients in species composition with depth and from east to west, and a weak but significant trend in species composition over time. The trend over time was associated with increases in the frequency of occurrence and CPUE of at least eight taxa, including skates (Rajidae), capelin (Mallotus villosus), three flatfish species, and Pacific Ocean perch, and decreases in frequency of occurrence and CPUE of several sculpin (Myoxocephalus spp.) species. Results are discussed in terms of spatial and temporal patterns in productivity and in the context of their ecological and management implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hundreds of tropical plant species house ant colonies in specialized chambers called domatia. When, in 1873, Richard Spruce likened plant-ants to fleas and asserted that domatia are ant-created galls, he incited a debate that lasted almost a century. Alth

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a study on the benthic faunal abundance and diversity of tiger shrimp P. monodon culture ponds in Perak, west coast of Malaysia Peninsular. Sampling was carried out at three weeks interval throughout the 116 days culture period. In addition, water temperature, dissolved oxygen, salinity, transparency, pH and organic matter of soil were also measured. Results showed that the major groups of macro-benthos comprised of gastropod, foraminifera, polychaetes, bivalve and insects; whereas the meio-benthos comprised of harpacticoid copepods, ostracods, nematodes, gastropods, foraminifera, bivalve, insects, crustacean nauplii and polychaetes. In macro-benthos, the abundance of different sizes of Gastropods increased throughout the culture duration. This consisted of 37-98.20% for <1cm length, 1.80-61.50% for 1-2cm length and 1.18—1.30% for >2cm length. Other macro and meio-benthic organisms decreased linearly with the culture period. The depletion symptom indicates that the culture species may have intensively preyed upon the consumable (<0.5cm in size) benthic fauna together with detritus and artificial diet; or could have been caused by pond bottom deterioration via uneaten feed, faces and toxic gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

黄龙世界自然遗产地岷江冷杉林(Abies faxoniana)生境类型多样,群落结构复杂,群落植物种类组成多样性丰富。揭示不同生境的生物多样性及其差异是认识生物多样性格局、形成及维持机制的前提和进行多样性保育的基础。本文采用样方法对黄龙钙化滩生境、阴坡非钙化生境及半阳坡非钙化生境的岷江冷杉原始林植物群落结构及植物多样性进行了研究。结果表明: 黄龙岷江冷杉林具有明显的复层异龄结构,垂直结构明显,乔木、灌木、草本、苔藓层次分明。共发现高等植物386 种,其中维管植物46 科103 属163 种,苔藓植38 科83 属物223 种。各层片结构及物种组成如下: (1)钙化滩生境、阴坡非钙化生境、半阳坡非钙化生境分别发现乔木18 种、13种、8 种。乔木层均可分为两个亚层,第一亚层优势种均为岷江冷杉,第二亚层主要为岷江冷杉异龄树或其它大高位芽物种。钙化滩生境第一亚层除优势种岷江冷杉外混生有巴山冷杉(Abies fargesii)、粗枝云杉(Picea asperata)以及阔叶树种白桦(Betula platyphylla)等,第二亚层主要为岷江冷杉异龄树;阴坡非钙化生境第一亚层除优势种岷江冷杉外间有巴山冷杉和白桦,第二亚层物种主要为川滇长尾槭(Acer caudatum var. prattii);半阳坡非钙化生境第一亚层除优势种岷江冷杉外混生有巴山冷杉,第二亚层主要为岷江冷杉异龄树。依乔木层优势种的差异,钙化滩生境及半阳坡非钙化生境为岷江冷杉纯林,阴坡非钙化生境为岷江冷杉-川滇长尾槭混交林。不同生境乔木层郁闭度、乔木密度、树高结构、直径结构均存在差异。 (2)钙化滩生境发现灌木41 种,平均盖度为18.49±1.72(%),平均高度为52.12±4.45(cm),优势种为直穗小檗(Berberis dasystachya);阴坡非钙化生境发现灌木30 种,平均盖度为29.33±2.56 (%),平均高度为119.55±8.01 (cm),优势种为箭竹 (Fargesia spathacea) 、唐古特忍冬(Lonicera tangutica) 和袋花忍冬(Lonicera saccata);半阳坡非钙化生境发现灌木29 种,平均盖度为31.35±1.93 (%),平均高度为107.55±4.24 (cm),优势种为箭竹(Fargesia spathacea)。不同生境灌木层结构和物种组成多样性差异显著,钙化滩生境的灌木盖度、高度总体上较非钙化的坡地生境低, 钙化滩生境灌木以小型叶的落叶灌木为主,沟两侧非钙化的坡地生境上则发育了丰富箭竹。 (3)钙化滩生境发现草本46 种,平均盖度为7.18±0.79 (%),平均高度为5.04±0.26(cm),以山酢浆草(Oxalis griffithii)为优势种;阴坡非钙化生境发现草本物种71 种,平均盖度达29.04±2.31(%),平均高度为9.08±0.52(cm),以钝叶楼梯草(Elatostema obtusum)、山酢浆草为优势种;半阳坡非钙化生境草本物种50 种,平均盖度为以8.79±0.82(%),平均高度为7.67±0.43 (cm),以扇叶铁线蕨(Adiantum flabellulatum)、双花堇菜(Viola biflora)、华中蛾眉蕨(Lunathyrium shennongense)、山酢浆草为优势种。阴坡非钙化生境草本层片发育良好,多样性最为丰富,盖度和物种丰富度均显著高于钙化滩生境和半阳坡非钙化生境。 (4)钙化滩生境发现苔藓物种140 种,平均盖度达84.25±1.30 (%),以仰叶星塔藓(Hylocomiastrum umbratum) 等大型藓类为优势种;阴坡非钙化生境发现苔藓物种115 种,平均盖度为79.29±1.64 (%),以刺叶提灯藓(Mnium spinosum)、大羽藓(Thuidium cymbifolium)、毛尖燕尾藓(Bryhnia trichomitra)等个体较小的物种为优势种;半阳坡非钙化生境发现苔藓物种91 种,平均盖度为60.64±1.93 (%),也以刺叶提灯藓为优势种。 (5)钙化滩生境、阴坡非钙化生境、半阳坡非钙化生境的物种数分别为234 种、221 种、175 种。乔木层的Shannon-Wiener 指数分别为0.75 ±0.12、1.87±0.12、1.78±0.07(灌木层,0.44±0.08、1.71± 0.15、2.49±0.06;草本层,0.33±0.13、1.31±0.15 、2.15±0.08; 苔藓层1.30±0.11、2.08±0.04、1.73±0.11,);Pielou 均匀度指数分别为0.45±0.05、0.29±0.06、0.28±0.08(灌木层,0.75±0.03、0.68±0.05、0.52±0.06;草本层,0.68±0.02、0.77±0.02、0.74±0.02;苔藓层,0.40±0.03、0.63±0.02、0.52±0.03);Simpson's 优势度指数分别为0.63±0.06、0.78±0.04、0.83±0.07(灌木层,0.21±0.03、0.28±0.05、0.45±0.06;草本层,0.25±0.02、0.12±0.01、0.17±0.01;苔藓层,0.45±0.04、0.18±0.01、0.31±0.04)。三种生境间乔木层、草本层的Sorenson 群落相似性系数较低, 灌木层、苔藓层的的Sorenson 群落相似性系数较高。 综上所述,黄龙岷江冷杉林的群落结构、植物多样性在三种生境间存在差异性,这将意味着我们在进行黄龙世界自然遗产地的森林经营管理时要较多地关注岷江冷山林群落在不同生境中的差异性。 There were multiplex habitat types, complicated community structure and abundant species composition in the Huanglong World Natural Heritage Site. Uncovering the differences of biodiversity among different habitats was a precondition to understand the distribution, formation and sustaining mechanism of the biodiversity, and the foundation of biodiversity conservation. In the present study, using plenty of quadrants, we investigated the community structure and the biodiversity of the primitive Abies faxoniana forest in different habitats (travertine bottomland, semi-sunny-slope non-calcified habitat and shady-slope non-calcified habitat) in the Huanglong World Natural Heritage Site. The main results are as follows: All the primitive Abies faxoniana forests in the three habitats were uneven-aged with obvious vertical structure including tree layer, shrub layer, herb layer and bryophyte layer. A total of 386 higher plants including 163 vascular plant species (103 generic, 46 families) and 223 bryophyte species (83 generic, 38 families) were investigated. The structure and species composition of each layer are as follows: (1) There were 18, 13 and 8 tree species in travertine bottomland, shady-slope non-calcified habitat and semi-sunny-slope non-calcified habitat, respectively. The tree layers in all habitats can be divided into two clear sub-layers. The upper tree layers were dominated by Abies faxoniana, and the lower tree layers were dominated by uneven-aged Abies faxoniana or other phanerophytes species. There were Abies fargesii , Picea asperata and Betula platyphylla besides the dominated species (Abies faxoniana) in the upper tree layer in travertine bottomland, and the lower tree layers were dominated by uneven-aged Abies faxoniana; There were Abies fargesii and Betula platyphylla besides the dominated species (Abies faxoniana) in the upper tree layer in shady-slope non-calcified habitat, and the lower tree layers were dominated by Acer caudatum var. prattii; There was Abies fargesii besides the dominated species (Abies faxoniana) in the upper tree layer semi-sunny-slope non-calcified habitat, and the lower tree layers were dominated by uneven-aged Abies faxoniana. According to composition percentage of dominate species in tree layer, both the forest in travertine bottomland and in semi-sunny-slope non-calcified habitat could be ranked as pure forest, and the forest in shady-slope non-calcified habitat could be ranked as mingled forest. There were significant differences in crown density, plant density, height structure and diameter structure among the three habitats. (2) A total of 41 shrub species (average coverage 18.49±1.72%; average height 52.12±4.45 ㎝)were found in travertine bottomland, and the dominate species was Berberis dasystachya; A total of 30 shrub species (average coverage 29.33±2.56 %;average height 119.55±8.01 ㎝)were found in shady-slope non-calcified habitat, and the dominate species was Fargesia spathacea, Lonicera tangutica and Lonicera saccata. A total of 29 shrub species (average coverage 31.35±1.93%; average height 107.55±4.24 ㎝) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Fargesia spathacea. There were significant differences in structure and species diversity of the shrub layers among the three habitats. The coverage and height of shrub had lower value in travertine bottomland than in two non-calcified habitats. Moreover, travertine bottomland was dominated by deciduous shrub species with microphyll and non-calcified habitats developed abundant Fargesia spathacea species. (3) A total of 46 herb species (average coverage 7.18±0.79%;average height 5.04±0.26 ㎝)were found in travertine bottomland, and the dominate species was Oxalis griffithii; A total of 71 herb species (average coverage 29.04±2.31%;average height 9.08±0.52 ㎝)were found in shady-slope non-calcified habitat, and the dominate species was Elatostema obtusum and Oxalis griffithii. A total of 50 herb species (average coverage 8.79±0.82%;average height 7.67±0.43 ㎝) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Adiantum flabellulatum, Viola biflora, Lunathyrium shennongense and Oxalis griffithii. Herb layers developed well in shady-slope non-calcified habitat and had the higher species richness and coverage than travertine bottomland and semi-sunny-slope non-calcified habitat. (4) A total of 140 bryophyte species (average coverage 84.25±1.30%)were found in travertine bottomland, and the dominate species was big bryophyte species such as Hylocomiastrum umbratum and so on; A total of 115 bryophyte species (average coverage 79.29±1.64%)were found in shady-slope non-calcified habitat, and the dominate species was small bryophyte species such as Mnium spinosum, Thuidium cymbifolium, Bryhnia trichomitra and so on. A total of 91 bryophyte species (average coverage 60.64±1.93%) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Mnium spinosum. (5) There were 234, 221 and 175 plant species in travertine bottomland, shady-slope non-calcified habitat and semi-sunny-slope non-calcified habitat, respectively. Shannon-Wiener index of the tree layer was 0.75 ±0.12, 1.87±0.12 and 1.78±0.07 (the shrub layer, 0.44±0.08, 1.71± 0.15 and 2.49±0.06; the herb layer, 0.33±0.13, 1.31±0.15 and 2.15±0.08; the bryophyte layer, 1.30±0.11, 2.08±0.04 and 1.73±0.11.) for the three habitats, respectively; Pielou index of the tree layer was 0.45±0.05, 0.29±0.06 and 0.28±0.08 (the shrub layer, 0.75±0.03, 0.68±0.05 and 0.52±0.06; the herb layer, 0.68±0.02, 0.77±0.02 and 0.74±0.02; the bryophyte layer, 0.40±0.03, 0.63±0.02 and 0.52±0.03.) for the three habitats, respectively. Simpson's index of the tree layer was 0.63±0.06, 0.78±0.04 and 0.83±0.07 (the shrub layer, 0.21±0.03、0.28±0.05、0.45±0.06; the herb layer, 0.25±0.02, 0.12±0.01 and 0.17±0.01; the bryophyte layer, 0.45±0.04, 0.18±0.01 and 0.31±0.04.) for the three habitats, respectively. There were low Sorenson index both in the tree layer and in the herb layer among the three habitats, whereas, high Sorenson index occurred both in the shrub layer and in the bryophyte layer. To sum up, there were differences both in community structure and plant diversity among the three different habitats, which means that we should pay more attention to habitats heterogeneities of the primitive Abies faxoniana forest when we take action to manage the forest in the Huanglong World Natural Heritage Site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between species diversity and ecotope diversity has long been debated. But these debates seem meaningless because most of them were based on different definitions. In this paper, diversity has two components: richness based on the total number and evenness based on the relative abundance. Species diversity is distinguished into individual-counting diversity and biomass-based diversity. Ecotope diversity is divided into individual ecotope-counting diversity and ecotope-area based diversity. Under this definition, we make a comprehensive investigation into Dongzhi tableland of Loess Plateau by cooperating with local technicians. We find that individual-counting diversity is significantly correlated with biomass-based diversity in grassland ecosystems; individual ecotope-counting diversity and ecotope-area based diversity have a significant correlation. Therefore, it is unnecessary to divide species diversity into individual-counting diversity and biomass-based diversity in grassland ecosystems and to distinguish ecotope diversity into individual ecotope-counting and ecotope-area based diversity for the issues that have no special requirement for accuracy. But the analyses of the investigation data demonstrate that species diversity has no significant correlation with ecotope diversity.