992 resultados para trace element
Resumo:
Multi-decadal to centennial planktic d18O and Mg/Ca records were generated at ODP976 in the Alboran Sea. The site is in the flow path of Atlantic inflow waters entering the Mediterranean and captured North Atlantic signals through the surface inflow and the atmosphere. The records reveal similar climatic oscillations during the last two glacial-to-interglacial transitions, albeit with a different temporal pacing. Glacial termination 1 (T1) was marked by Heinrich event 1 (H1), post-H1 Bolling/Allerod (B/A) warming and Younger Dryas (YD) cooling. During T2 the H11 d18O anomaly was twice as high and lasted 30% longer than during H1. The post-H11 warming marked the start of MIS5e while the subsequent YD-style cooling occurred during early MIS5e. The post-H11 temperature increase at ODP976 matched the sudden Asian Monsoon Termination II at 129 ka BP. Extending the 230Th-dated speleothem timescale to ODP976 suggests glacial conditions in the Northeast Atlantic region were terminated abruptly and interglacial warmth was reached in less than a millennium. The early-MIS5e cooling and freshening at ODP976 coincided with similar changes at North Atlantic sites suggesting this was a basin-wide event. By analogy with T1 we argue that this was a YD-type event that was shifted into the early stages of the last interglacial period. This scenario is consistent with evidence from northern North Atlantic and Nordic Sea sites that the continuing disintegration of the large Saalian Stage (MIS6) ice sheet in Eurasia delayed the advection of warm North Atlantic waters and full-strength convective overturn until later stages of MIS5e.
Resumo:
On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.
Resumo:
An intensive geochemical investigation was conducted on carbonate sediments recovered during Ocean Drilling Program Leg 182. Four trace elements in 635 sediment samples from Sites 1126-1132 on the Great Australian Bight were examined by atomic absorption spectrometry on the acid-soluble fraction. Downhole profiles of these elements exhibit complicated fluctuations throughout the late Eocene to Pleistocene, principally because of the variations in the acid-soluble fraction. The purpose of this study is to present initial results on the geochemical composition of Cenozoic cool-water carbonates as a basis for a future detailed investigation to determine the paleoenvironment of a carbonate-dominated continental margin during the evolution of the Southern Ocean.
Resumo:
Distinctive light-dark color cycles in sediment beneath the Benguela Current Upwelling System indicate repetitive alternations in sediment delivery and deposition. Geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in three mid-Pleistocene intervals from ODP Sites 1082 and 1084. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1%. Concentrations of CaCO3 vary inversely to TOC and Al, which suggests that both carbonate dissolution and terrigenous dilution contribute to the light-dark cycles. Opal concentrations are independent of both TOC and CaCO3, therefore eliminating diatom production and lateral transport of shelf material as causes of the light-dark cycles. d13Corg and d15Ntot values do not vary across light-dark sediment intervals, implying that the extent of relative nutrient utilization did not change. The stable d15Ntot values represent a balanced change in nitrate supply and export production and therefore indicate that productivity was elevated during deposition of the TOC-rich layers. Parallel changes in concentrations of indicator trace elements and TOC imply that changes in organic matter delivery influenced geochemical processes on the seafloor by controlling consumption of pore water oxygen. Cu, Ni, and Zn are enriched in the darker sediment as a consequence of greater organic matter delivery. Redox-sensitive metals vary due to loss (Mn and Ba) or enrichment (Mo) under reducing conditions created by TOC oxidation. Organic matter delivery impacts subsequent geochemical changes such as carbonate dissolution, sulfate reduction and the concentration of metals. Thus, export production is considered ultimately responsible for the generation of the color cycles.
Resumo:
We present Mg/Ca data for Globigerina bulloides from 10 core top sites in the southwest Pacific Ocean analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Mg/Ca values in G. bulloides correlate with observed ocean temperatures (7°C-19°C), and when combined with previously published data, an integrated Mg/Ca-temperature calibration for 7°C-31°C is derived where Mg/Ca (mmol/mol) = 0.955 * e**(0.068 * T) (r**2 = 0.95). Significant variability of Mg/Ca values (20%-30%) was found for the four visible chambers of G. bulloides, with the final chamber consistently recording the lowest Mg/Ca and is interpreted, in part, to reflect changes in the depth habitat with ontogeny. Incipient and variable dissolution of the thin and fragile final chamber, and outermost layer concomitantly added to all chambers, caused by different cleaning techniques prior to solution-based ICPMS analyses, may explain the minor differences in previously published Mg/Ca-temperature calibrations for this species. If the lower Mg/Ca of the final chamber reflects changes in depth habitat, then LA-ICPMS of the penultimate (or older) chambers will most sensitively record past changes in near-surface ocean temperatures. Mean size-normalized G. bulloides test weights correlate negatively with ocean temperature (T = 31.8 * e**(-30.5*wtN); r**2 = 0.90), suggesting that in the southwest Pacific Ocean, temperature is a prominent control on shell weight in addition to carbonate ion levels.
Resumo:
Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources. This article is protected by copyright. All rights reserved.