989 resultados para time dependence
Resumo:
A theoretical model on the basis of the free-volume concept is presented explaining the temperature dependence of photoinduced birefringence in polystyrene films that contain Disperse Red-1. Birefringence increases with temperature up to 180 K as the free volume for isomerization increases, and then decreases as thermally activated processes dominate. The fast process of birefringence decay has a time constant that increases with temperature at low temperatures, due to the change kin photoisomerization.
A model for optimal chemical control of leaf area damaged by fungi population - Parameter dependence
Resumo:
We present a model to study a fungi population submitted to chemical control, incorporating the fungicide application directly into the model. From that, we obtain an optimal control strategy that minimizes both the fungicide application (cost) and leaf area damaged by fungi population during the interval between the moment when the disease is detected (t = 0) and the time of harvest (t = t(f)). Initially, the parameters of the model are considered constant. Later, we consider the apparent infection rate depending on the time (and the temperature) and do some simulations to illustrate and to compare with the constant case.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Time-of-flight measurements were carried out in orthorhombic sulfur for various fields, ranging from -2 to -20 kV/cm. No dependence of the mobility with the electric field was found but the current, normalized by the initial current, showed an electric field dependence at small times, decaying faster for larger electric field. After the failure of the usual models in explaining the resultsincluding the assumption of depth-dependent density of trapsa model assuming an extra mobility channel near the surface provided a reasonable set of parameters independent of the electric field. The measurements were carried out at 8.5, 29, 53, 68, and 79°C. © 1988 The American Physical Society.
Resumo:
It is pointed out that erroneous Bardeen-Cooper-Schrieffer model equations have been used by Haranath Ghosh in his recent treatment of time-reversal symmetry-breaking superconductivity. Consequently, his numerical results are misleading, and his conclusions are not to the point.
Resumo:
The formation of sulfated zirconia films from a sol-gel derived aqueous suspension is subjected to double-optical monitoring during batch dip coating. Interpretation of interferometric patterns, previously obscured by a variable refractive index, is now made possible by addition of its direct measurement by a polarimetric technique in real time. Significant sensitivity of the resulting physical thickness and refractive index curves (uncertainties of ±7 nm and ±0.005, respectively) to temporal film evolution is shown under different withdrawal speeds. As a first contribution to quantitative understanding of temporal film formation with varying nanostructure during dip coating, detailed analysis is directed to the stage of the process dominated by mass drainage, whose simple modeling with temporal t-1/2 dependence is verified experimentally. © 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes to use a state-space technique to represent a frequency dependent line for simulating electromagnetic transients directly in time domain. The distributed nature of the line is represented by a multiple 1t section network made up of the lumped parameters and the frequency dependence of the per unit longitudinal parameters is matched by using a rational function. The rational function is represented by its equivalent circuit with passive elements. This passive circuit is then inserted in each 1t circuit of the cascade that represents the line. Because the system is very sparse, it is possible to use a sparsity technique to store only nonzero elements of this matrix for saving space and running time. The model was used to simulate the energization process of a 10 km length single-phase line. ©2008 IEEE.
Resumo:
Includes Bibliography
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of the present paper is to study some properties of solutions of Volterra integral equations on time scales. We generalize to a time scale some known properties concerning continuity and convergence of solutions from the continuous case.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We study measure functional differential equations and clarify their relation to generalized ordinary differential equations. We show that functional dynamic equations on time scales represent a special case of measure functional differential equations. For both types of equations, we obtain results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging.
Resumo:
Triple-gate devices are considered a promising solution for sub-20 nm era. Strain engineering has also been recognized as an alternative due to the increase in the carriers mobility it propitiates. The simulation of strained devices has the major drawback of the stress non-uniformity, which cannot be easily considered in a device TCAD simulation without the coupled process simulation that is time consuming and cumbersome task. However, it is mandatory to have accurate device simulation, with good correlation with experimental results of strained devices, allowing for in-depth physical insight as well as prediction on the stress impact on the device electrical characteristics. This work proposes the use of an analytic function, based on the literature, to describe accurately the strain dependence on both channel length and fin width in order to simulate adequately strained triple-gate devices. The maximum transconductance and the threshold voltage are used as the key parameters to compare simulated and experimental data. The results show the agreement of the proposed analytic function with the experimental results. Also, an analysis on the threshold voltage variation is carried out, showing that the stress affects the dependence of the threshold voltage on the temperature. (C) 2011 Elsevier Ltd. All rights reserved.