897 resultados para time delay
Resumo:
Invasive candidiasis (IC) is an opportunistic systemic mycosis caused by Candida species (commonly Candida albicans) that continues to pose a significant public health problem worldwide. Despite great advances in antifungal therapy and changes in clinical practices, IC remains a major infectious cause of morbidity and mortality in severely immunocompromised or critically ill patients, and further accounts for substantial healthcare costs. Its impact on patient clinical outcome and economic burden could be ameliorated by timely initiation of appropriate antifungal therapy. However, early detection of IC is extremely difficult because of its unspecific clinical signs and symptoms, and the inadequate accuracy and time delay of the currently available diagnostic or risk stratification methods. In consequence, the diagnosis of IC is often attained in advanced stages of infection (leading to delayed therapeutic interventions and ensuing poor clinical outcomes) or, unfortunately, at autopsy. In addition to the difficulties encountered in diagnosing IC at an early stage, the initial therapeutic decision-making process is also hindered by the insufficient accuracy of the currently available tools for predicting clinical outcomes in individual IC patients at presentation. Therefore, it is not surprising that clinicians are generally unable to early detect IC, and identify those IC patients who are most likely to suffer fatal clinical outcomes and may benefit from more personalized therapeutic strategies at presentation. Better diagnostic and prognostic biomarkers for IC are thus needed to improve the clinical management of this life-threatening and costly opportunistic fungal infection...
Resumo:
Doutoramento em Economia
Resumo:
This thesis details the design and applications of a terahertz (THz) frequency comb spectrometer. The spectrometer employs two offset locked Ti:Sapphire femtosecond oscillators with repetition rates of approximately 80 MHz, offset locked at 100 Hz to continuously sample a time delay of 12.5 ns at a maximum time delay resolution of 15.6 fs. These oscillators emit continuous pulse trains, allowing the generation of a THz pulse train by the master, or pump, oscillator and the sampling of this THz pulse train by the slave, or probe, oscillator via the electro-optic effect. Collecting a train of 16 consecutive THz pulses and taking the Fourier transform of this pulse train produces a decade-spanning frequency comb, from 0.25 to 2.5 THz, with a comb tooth width of 5 MHz and a comb tooth spacing of ~80 MHz. This frequency comb is suitable for Doppler-limited rotational spectroscopy of small molecules. Here, the data from 68 individual scans at slightly different pump oscillator repetition rates were combined, producing an interleaved THz frequency comb spectrum, with a maximum interval between comb teeth of 1.4 MHz, enabling THz frequency comb spectroscopy.
The accuracy of the THz frequency comb spectrometer was tested, achieving a root mean square error of 92 kHz measuring selected absorption center frequencies of water vapor at 10 mTorr, and a root mean square error of 150 kHz in measurements of a K-stack of acetonitrile. This accuracy is sufficient for fitting of measured transitions to a model Hamiltonian to generate a predicted spectrum for molecules of interest in the fields of astronomy and physical chemistry. As such, the rotational spectra of methanol and methanol-OD were acquired by the spectrometer. Absorptions from 1.3 THz to 2.0 THz were compared to JPL catalog data for methanol and the spectrometer achieved an RMS error of 402 kHz, improving to 303 kHz when excluding low signal-to-noise absorptions. This level of accuracy compares favorably with the ~100 kHz accuracy achieved by JPL frequency multiplier submillimeter spectrometers. Additionally, the relative intensity performance of the THz frequency comb spectrometer is linear across the entire decade-spanning bandwidth, making it the preferred instrument for recovering lineshapes and taking absolute intensity measurements in the THz region. The data acquired by the Terahertz Frequency Comb Spectrometer for methanol-OD is of comparable accuracy to the methanol data and may be used to refine the fit parameters for the predicted spectrum of methanol-OD.
Resumo:
This thesis investigates the rotational behavior of abstracted small-wind-turbine rotors exposed to a sudden increase in oncoming flow velocity, i.e. a gust. These rotors consisted of blades with aspect ratios characteristic of samara seeds, which are known for their ability to maintain autorotation in unsteady wind. The models were tested in a towing tank using a custom-built experimental rig. The setup was designed and constructed to allow for the measurement of instantaneous angular velocity of a rotor model towed at a prescribed kinematic profile along the tank. The conclusions presented in this thesis are based on the observed trends in effective angle-of-attack distribution, tip speed ratio, angular velocity, and time delay in the rotational response for each of rotors over prescribed gust cases. It was found that the blades with the higher aspect ratio had higher tip speed ratios and responded faster than the blades with a lower aspect ratio. The decrease in instantaneous tip speed ratio during the onset of a prescribed gust correlated with the time delay in each rotor model's rotational response. The time delays were found to increase nonlinearly with decreasing durations over which the simulated gusts occurred.
Resumo:
The current approach to data analysis for the Laser Interferometry Space Antenna (LISA) depends on the time delay interferometry observables (TDI) which have to be generated before any weak signal detection can be performed. These are linear combinations of the raw data with appropriate time shifts that lead to the cancellation of the laser frequency noises. This is possible because of the multiple occurrences of the same noises in the different raw data. Originally, these observables were manually generated starting with LISA as a simple stationary array and then adjusted to incorporate the antenna's motions. However, none of the observables survived the flexing of the arms in that they did not lead to cancellation with the same structure. The principal component approach is another way of handling these noises that was presented by Romano and Woan which simplified the data analysis by removing the need to create them before the analysis. This method also depends on the multiple occurrences of the same noises but, instead of using them for cancellation, it takes advantage of the correlations that they produce between the different readings. These correlations can be expressed in a noise (data) covariance matrix which occurs in the Bayesian likelihood function when the noises are assumed be Gaussian. Romano and Woan showed that performing an eigendecomposition of this matrix produced two distinct sets of eigenvalues that can be distinguished by the absence of laser frequency noise from one set. The transformation of the raw data using the corresponding eigenvectors also produced data that was free from the laser frequency noises. This result led to the idea that the principal components may actually be time delay interferometry observables since they produced the same outcome, that is, data that are free from laser frequency noise. The aims here were (i) to investigate the connection between the principal components and these observables, (ii) to prove that the data analysis using them is equivalent to that using the traditional observables and (ii) to determine how this method adapts to real LISA especially the flexing of the antenna. For testing the connection between the principal components and the TDI observables a 10x 10 covariance matrix containing integer values was used in order to obtain an algebraic solution for the eigendecomposition. The matrix was generated using fixed unequal arm lengths and stationary noises with equal variances for each noise type. Results confirm that all four Sagnac observables can be generated from the eigenvectors of the principal components. The observables obtained from this method however, are tied to the length of the data and are not general expressions like the traditional observables, for example, the Sagnac observables for two different time stamps were generated from different sets of eigenvectors. It was also possible to generate the frequency domain optimal AET observables from the principal components obtained from the power spectral density matrix. These results indicate that this method is another way of producing the observables therefore analysis using principal components should give the same results as that using the traditional observables. This was proven by fact that the same relative likelihoods (within 0.3%) were obtained from the Bayesian estimates of the signal amplitude of a simple sinusoidal gravitational wave using the principal components and the optimal AET observables. This method fails if the eigenvalues that are free from laser frequency noises are not generated. These are obtained from the covariance matrix and the properties of LISA that are required for its computation are the phase-locking, arm lengths and noise variances. Preliminary results of the effects of these properties on the principal components indicate that only the absence of phase-locking prevented their production. The flexing of the antenna results in time varying arm lengths which will appear in the covariance matrix and, from our toy model investigations, this did not prevent the occurrence of the principal components. The difficulty with flexing, and also non-stationary noises, is that the Toeplitz structure of the matrix will be destroyed which will affect any computation methods that take advantage of this structure. In terms of separating the two sets of data for the analysis, this was not necessary because the laser frequency noises are very large compared to the photodetector noises which resulted in a significant reduction in the data containing them after the matrix inversion. In the frequency domain the power spectral density matrices were block diagonals which simplified the computation of the eigenvalues by allowing them to be done separately for each block. The results in general showed a lack of principal components in the absence of phase-locking except for the zero bin. The major difference with the power spectral density matrix is that the time varying arm lengths and non-stationarity do not show up because of the summation in the Fourier transform.
Resumo:
The main goal of this paper is to expose and validate a methodology to design efficient automatic controllers for irrigation canals, based on the Saint-Venant model. This model-based methodology enables to design controllers at the design stage (when the canal is not already built). The methodology is applied on an experimental canal located in Portugal. First the full nonlinear PDE model is calibrated, using a single steady-state experiment. The model is then linearized around a functioning point, in order to design linear PI controllers. Two classical control strategies are tested (local upstream control and distant downstream control) and compared on the canal. The experimental results show the effectiveness of the model.
Resumo:
PEMF are a medical and non-invasive therapy successfully used for clinical treatments of bone disease, due to the piezoelectric effect that improve bone mass and density, by the stimulation of osteoblastogenesis, with modulation of calcium storages and mineral metabolism. PEMF enhance tissue oxygenation, microcirculation and angiogenesis, in rats and cells erythrocytes, in cells-free assay. Such responses could be caused by a modulation of nitric oxide signal and interaction between PEMF and Ca2+/NO/cGMP/PKG signal. PEMF improve blood flow velocity of smallest vein without changing their diameter. PEMF therapy helpful in patients with diabetes, due to increased microcirculation trough enhance capillary blood velocity and diameter. We investigated the influence of stimulation on muscular activity, tissue oxygenation and pulmonary VO2, during exercise, on different intensity, as heavy or moderate, different subjects, as a athlete or sedentary, and different sport activity, as a cycling or weightlifting. In athletes, we observed a tendency for a greater change and a faster kinetic of HHb concentration. PEMF increased the velocity and the quantity of muscle O2 available, leading to accelerate the HHb kinetics. Stimulation induced a bulk muscle O2 availability and a greater muscle O2 extraction, leading to a reduced time delay of the HHb slow component. Stimulation increased the amplitude of muscle activity under different conditions, likely caused by the effect of PEMF on contraction mechanism of muscular fibers, by the change of membrane permeability and Ca2+ channel conduction. In athletes, we observed an increase of overall activity during warm-up. In sedentary people, stimulation increased the magnitude of muscle activity during moderate constant-load exercise and warm-up. In athletes and weightlifters, stimulation caused an increase of blood lactate concentration during exercise, confirming a possible influence of stimulation on muscle activity and on glycolytic metabolism of type-II muscular fibers.
Resumo:
One of the major challenges in the development of an immersive system is handling the delay between the tracking of the user’s head position and the updated projection of a 3D image or auralised sound, also called end-to-end delay. Excessive end-to-end delay can result in the general decrement of the “feeling of presence”, the occurrence of motion sickness and poor performance in perception-action tasks. These latencies must be known in order to provide insights on the technological (hardware/software optimization) or psychophysical (recalibration sessions) strategies to deal with them. Our goal was to develop a new measurement method of end-to-end delay that is both precise and easily replicated. We used a Head and Torso simulator (HATS) as an auditory signal sensor, a fast response photo-sensor to detect a visual stimulus response from a Motion Capture System, and a voltage input trigger as real-time event. The HATS was mounted in a turntable which allowed us to precisely change the 3D sound relative to the head position. When the virtual sound source was at 90º azimuth, the correspondent HRTF would set all the intensity values to zero, at the same time a trigger would register the real-time event of turning the HATS 90º azimuth. Furthermore, with the HATS turned 90º to the left, the motion capture marker visualization would fell exactly in the photo-sensor receptor. This method allowed us to precisely measure the delay from tracking to displaying. Moreover, our results show that the method of tracking, its tracking frequency, and the rendering of the sound reflections are the main predictors of end-to-end delay.
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
BACKGROUND & AIMS: Development of strictures is a major concern for patients with eosinophilic esophagitis (EoE). At diagnosis, EoE can present with an inflammatory phenotype (characterized by whitish exudates, furrows, and edema), a stricturing phenotype (characterized by rings and stenosis), or a combination of these. Little is known about progression of stricture formation; we evaluated stricture development over time in the absence of treatment and investigated risk factors for stricture formation. METHODS: We performed a retrospective study using the Swiss EoE Database, collecting data on 200 patients with symptomatic EoE (153 men; mean age at diagnosis, 39 ± 15 years old). Stricture severity was graded based on the degree of difficulty associated with passing of the standard adult endoscope. RESULTS: The median delay in diagnosis of EoE was 6 years (interquartile range, 2-12 years). With increasing duration of delay in diagnosis, the prevalence of fibrotic features of EoE, based on endoscopy, increased from 46.5% (diagnostic delay, 0-2 years) to 87.5% (diagnostic delay, >20 years; P = .020). Similarly, the prevalence of esophageal strictures increased with duration of diagnostic delay, from 17.2% (diagnostic delay, 0-2 years) to 70.8% (diagnostic delay, >20 years; P < .001). Diagnostic delay was the only risk factor for strictures at the time of EoE diagnosis (odds ratio = 1.08; 95% confidence interval: 1.040-1.122; P < .001). CONCLUSIONS: The prevalence of esophageal strictures correlates with the duration of untreated disease. These findings indicate the need to minimize delay in diagnosis of EoE.
Resumo:
The time interval between successive migrations of biological species causes a delay time in the reaction-diffusion equations describing their space-time dynamics. This lowers the predicted speed of the waves of advance, as compared to classical models. It has been shown that this delay-time effect improves the modeling of human range expansions. Here, we demonstrate that it can also be important for other species. We present two new examples where the predictions of the time-delayed and the classical (Fisher) approaches are compared to experimental data. No free or adjustable parameters are used. We show that the importance of the delay effect depends on the dimensionless product of the initial growth rate and the delay time. We argue that the delay effect should be taken into account in the modeling of range expansions for biological species
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B®) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V® 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin®, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean ± S.E.M.) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8 ± 1.8, 6.1 ± 1.3, 51.5), P48 (12.6 ± 1.9, 7.1 ± 1.0, 52.3), P60 (10.5 ± 1.6, 5.7 ± 1.3, 40.0) and D60 (10.3 ± 1.7, 5.0 ± 1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol. © 2002 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.
Resumo:
BACKGROUND & AIMS Development of strictures is a major concern for patients with eosinophilic esophagitis (EoE). At diagnosis, EoE can present with an inflammatory phenotype (characterized by whitish exudates, furrows, and edema), a stricturing phenotype (characterized by rings and stenosis), or a combination of these. Little is known about progression of stricture formation; we evaluated stricture development over time in the absence of treatment and investigated risk factors for stricture formation. METHODS We performed a retrospective study using the Swiss EoE Database, collecting data on 200 patients with symptomatic EoE (153 men; mean age at diagnosis, 39 ± 15 years old). Stricture severity was graded based on the degree of difficulty associated with passing of the standard adult endoscope. RESULTS The median delay in diagnosis of EoE was 6 years (interquartile range, 2-12 years). With increasing duration of delay in diagnosis, the prevalence of fibrotic features of EoE, based on endoscopy, increased from 46.5% (diagnostic delay, 0-2 years) to 87.5% (diagnostic delay, >20 years; P = .020). Similarly, the prevalence of esophageal strictures increased with duration of diagnostic delay, from 17.2% (diagnostic delay, 0-2 years) to 70.8% (diagnostic delay, >20 years; P < .001). Diagnostic delay was the only risk factor for strictures at the time of EoE diagnosis (odds ratio = 1.08; 95% confidence interval: 1.040-1.122; P < .001). CONCLUSIONS The prevalence of esophageal strictures correlates with the duration of untreated disease. These findings indicate the need to minimize delay in diagnosis of EoE.