565 resultados para ticks
Resumo:
Wild canids are under many pressures, including habitat loss, fragmentation and disease. The current lack of information on the status of wildlife health may hamper conservation efforts in Brazil. In this paper, we examined the prevalence of canine pathogens in 21 free-ranging wild canids, comprising 12 Cerdocyon thous (crab-eating fox), 7 Chrysocyon brachyurus (maned wolf), 2 Lycalopex vetulus (hoary fox), and 70 non-vaccinated domestic dogs from the Serra do Cip National Park area, Southeast Brazil. For wild canids, seroprevalence of antibodies to canine parvovirus, canine adenovirus, canine coronavirus and Toxoplasma gondii was 100 (21/21), 33 (7/21), 5 (1/19) and 68 (13/19) percent, respectively. Antibodies against canine distemper virus, Neospora caninum or Babesia spp. were not found. We tested domestic dogs for antibodies to canine parvovirus, canine distemper virus and Babesia spp., and seroprevalences were 59 (41/70), 66 (46/70), and 42 (40/70) percent, respectively, with significantly higher prevalence in domestic dogs for CDV (P < 0.001) and Babesia spp. (P = 0.002), and in wild canids for CPV (P < 0.001). We report for the first time evidence of exposure to canine coronavirus in wild hoary foxes, and Platynossomun sp. infection in wild maned wolves. Maned wolves are more exposed to helminths than crab-eating foxes, with a higher prevalence of Trichuridae and Ancylostomidae in the area. The most common ectoparasites were Amblyomma cajennense, A. tigrinum, and Pulex irritans. Such data is useful information on infectious diseases of Brazilian wild canids, revealing pathogens as a threat to wild canids in the area. Control measures are discussed.
Resumo:
Blood samples collected from 201 humans, 92 dogs, and 27 horses in the state of Espirito Santo, Brazil, were tested by polymerase chain reaction, indirect immunofluorescence assays, and indirect enzyme-linked immunosorbent assay for tick-borne diseases (rickettsiosis, ehrlichiosis, anaplasmosis, borreliosis, babesiosis). Our results indicated that the surveyed counties are endemic for spotted fever group rickettsiosis because sera from 70 (34.8%) humans, 7 (7.6%) dogs, and 7 (25.9%) horses were reactive to at least one of the six Rickettsia species tested. Although there was evidence of ehrlichiosis (Ehrlichia canis) and babesiosis (Babesia cams vogeli, Theileria equi) in domestic animals, no human was positive for babesiosis and only four individuals were serologically positive for E. canis. Borrelia burgdorferi-serologic reactive sera were rare among humans and horses, but encompassed 51% of the canine samples, suggesting that dogs and their ticks can be part of the epidemiological cycle of the causative agent of the Brazilian zoonosis, named Baggio-Yoshinari Syndrome.
Resumo:
Plasmids are mobile genetic elements of bacteria that can impart important adaptive traits, such as increased virulence or antibiotic resistance. We report the existence of plasmids in Rickettsia (Rickettsiales; Rickettsiaceae) species, including Rickettsia akari, ""Candidatus Rickettsia amblyommii,"" R. bellii, R. rhipicephali, and REIS, the rickettsial endosymbiont of Ixodes scapularis. All of the rickettsiae were isolated from humans or North and South American ticks. R. parkeri isolates from both continents did not possess plasmids. We have now demonstrated plasmids in nearly all Rickettsia species that we have surveyed from three continents, which represent three of the four major proposed phylogenetic groups associated with blood-feeding arthropods. Gel-based evidence consistent with the existence of multiple plasmids in some species was confirmed by cloning plasmids with very different sequences from each of two ""Ca. Rickettsia amblyommii"" isolates. Phylogenetic analysis of rickettsial ParA plasmid partitioning proteins indicated multiple parA gene origins and plasmid incompatibility groups, consistent with possible multiple plasmid origins. Phylogenetic analysis of potentially host-adaptive rickettsial small heat shock proteins showed that hsp2 genes were plasmid specific and that hsp1 genes, found only on plasmids of ""Ca. Rickettsia amblyommii,"" R. felis, R. monacensis, and R. peacockii, were probably acquired independently of the hsp2 genes. Plasmid copy numbers in seven Rickettsia species ranged from 2.4 to 9.2 per chromosomal equivalent, as determined by real-time quantitative PCR. Plasmids may be of significance in rickettsial evolution and epidemiology by conferring genetic plasticity and host-adaptive traits via horizontal gene transfer that counteracts the reductive genome evolution typical of obligate intracellular bacteria.
Resumo:
Together with the larval stage, the nymphal stage of ticks of the genus Amblyomma are the most aggressive ticks for humans entering areas inhabited by wildlife and some domestic animals in Brazil. However, due to the absence of morphological descriptions of the nymphal stage of most Brazilian Amblyomma species, plus the lack of an identification key, little or nothing is known about the life history of Amblyomma spp. nymphs in the country. In the present study, morphological description of the nymphal stage, illustrating important external characters through scanning electron microscopy, is provided for nymphs of 15 Amblyomma species that occur in Brazil, for which the nymphal stage had never been described: A. aureolatum, A. auricularium, A. calcaratum, A. coelebs, A. fuscum, A. humerale, A. incisum, A. latepunctatum, A. naponense, A. nodosum, A. ovate, A. pacae, A. pseudoconcolor, A. scalpturatum, A. varium. In addition, the nymphal stage of 12 Amblyomma species, which had been previously described, are redescribed: A. brasiliense, A. cajennense, A. dissimile, A. dubitatum, A. longirostre, A. oblongoguttatum, A. parked, A. parvum, A. romitii, A. rotundatum, A. tigrinum, A. triste. The descriptions and redescriptions totalized 27 species. Only 2 species (A. geayi, A. goeldii) out of the 29 Amblyomma species established in Brazil are not included in the present study. A dichotomous identification key is included to support taxonomic identification of the nymphal stage of 27 Amblyomma species established in Brazil. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Males, females, and larvae of Carios fonsecai sp. nov. are described from free-living ticks collected in a cave at Bonito, state of Mato Grosso do Sul, Brazil. The presence of cheeks and legs with micromammillate cuticle makes adults of C. fonsecai morphologically related to a group of argasid species (mostly bat-associated) formerly classified into the subgenus Alectorobius, genus Ornithodoros. Examination of larvae indicates that C. fonsecai is clearly distinct from most of the previously described Carios species formerly classified into the subgenus Alectorobius, based primarily on its larger body size, dorsal setae number, dorsal plate shape, and hypostomal morphology. On the other hand, the larva of C. fonsecai is most similar to Carios peropteryx, and Carios peruvianus, from which differences in dorsal plate length and width, tarsal setae, and hypostome characteristics are useful for morphological differentiation. The mitochondrial 16S rDNA sequence of C. fonsecai showed to be closest (85-88% identity) to several corresponding sequences of different Carios species available in GenBank. Bats identified as Peropteryx macrotis and Desmodus rotundus were found infested by C. fonsecai larvae in the same cave where the type series was collected. C. fonsecai showed to be aggressive to humans in the laboratory.
Resumo:
Larval behavioral diapause was shown to be the major factor controlling the 1-yr generation pattern of Amblyomma cajennense (F.) (Acari: Ixodidae) in Brazil. During fieldwork, this behavior was shown to coincide with long daylength (>12 h) and high mean ground temperature (approximate to 25 degrees C), which prevail during spring-summer in Brazil. The current study evaluated biological parameters of engorged females, their eggs, and the resultant larvae inside plastic pots planted with the grass Brachiaria decumbens Stapf. held in incubators set with different combinations of temperature and photoperiod. Both the long daylength (photoperiod 14:10 [L:D]h) and high temperature (25 degrees C) during larval hatching induced larval behavioral diapause, characterized by the confinement of hatched larvae on the ground below the vegetation for many weeks. When long daylength was present during hatching, but temperature was low (15 degrees C), larvae did not enter diapause. Similarly, when short daylength (10:14 or 12:12) was present during larval hatching, larvae did not enter diapause regardless whether temperature was high (25 degrees C). Termination of diapause was induced by shifting photoperiod from 14:10 to 12:12 or the temperature from 25 to 15 degrees C. When applied to field conditions, the present results indicate that both high ground mean temperature (approximate to 25 degrees C) and long daylength (>12 h) during spring-summer (October-March) are responsible for the induction and maintenance of A. cajennense larval behavioral diapause in the field. Furthermore, both the low ground mean temperature (-20 degrees C) and the short daylength (<12h) during autumn (April-May) are responsible for termination of larval behavioral diapause in the field.
Resumo:
The life cycle of Ixodes luciae was evaluated for five consecutive generations in the laboratory. Wild mice Calomys callosus and laboratory rats Rattus norvegicus were used as hosts for larvae and nymphs. For adult ticks, opossums Didelphis aurita were used as hosts. Off-host developmental periods were observed in an incubator at 27A degrees C and 95% RH. The life cycle of I. luciae lasted 95-97 days, excluding prefeeding periods. C. callosus, one of the natural host species for I. luciae immature stages, was shown to be much more suitable than the artificial host R. norvegicus. Significantly (P < 0.05), more larvae and nymphs successfully fed on C. callosus than on R. norvegicus. When tick-na < ve C. callosus were exposed to three consecutive larval infestations at 24-day intervals, recovery of engorged larvae were greater in the second and third infestations, indicating that previous infestations did not induce acquired resistance to ticks. Larval feeding period typically varied from 5 to 10 days on R. norvegicus, but was significantly (P < 0.05), longer on C. callosus (range, 7-34 days). The majority (71.7%) of I. luciae adult females successfully fed and oviposited after exposed to D. aurita. Mean engorged weight (581.9 mg; range, 237.1-796.0 mg) of these females were much higher than those previously reported for other New World Ixodes species. Our results are in accordance to the current literature that appoints opossums Didelphidae and small rodents (e.g., C. callosus) natural hosts for I. luciae immature and adult stages, respectively.
Resumo:
Free-living adult Amblyomma incisum ticks were collected in an Atlantic rainforest area at Intervales State Park, State of Sao Paulo, Brazil. From an A. incisum specimen, rickettsiae were successfully isolated in Vero cell culture by the shell vial technique. Rickettsial isolation was confirmed by optical microscopy, transmission electron microscopy, and PCRs targeting portions of the rickettsial genes gltA, htrA, rrs, and sca1 on infected cells. Fragments of 1,089, 457, 1,362, and 443 nucleotides of the gltA, htrA, rrs, and sca1 genes, respectively, were sequenced. By BLAST analysis, the partial sequence of rrs of the A. incisum rickettsial isolate was closest to the corresponding sequence of Rickettsia bellii (99.1% similarity). The gltA partial sequence was closest to the corresponding sequences of ""Candidatus Rickettsia tarasevichiae"" (96.1% similarity) and Rickettsia canadensis (95.8% similarity). The htrA partial sequence was closest to the corresponding sequence of R. canadensis (89.8% similarity). The sca1 partial sequence was closest to the corresponding sequence of R. canadensis (95.2% similarity). Since our rickettsial isolate was genetically distinct from other Rickettsia species, we propose a new species designated Rickettsia monteiroi sp. nov. Phylogenetic analyses indicated that R. monteiroi belongs to the canadensis group within the genus Rickettsia, together with the species R. canadensis and ""Candidatus R. tarasevichiae"". Little or no antibody cross-reaction was observed between sera of R. monteiroi-inoculated guinea pigs and R. bellii-, Rickettsia rickettsii-, or R. canadensis-inoculated guinea pigs.
Resumo:
The present study aimed to evaluate under controlled conditions the acquisition of Hepatozoon canis by Amblyomma ovale after feeding on infected dogs, and the subsequent induction of infection in uninfected dogs that ingested the experimentally infected ticks. Two H. canis naturally infected dogs were infested with A. ovate adult ticks derived from an uninfected laboratory tick colony. After feeding, two A. ovale females presented H. canis oocysts in the hemolymph at the first and fourth days after removal of ticks from dogs. The oocysts had an average size of 244.34 mu m x 255.46 mu m. Three uninfected dogs were fed with ticks previously fed on the infected dogs. Only one dog became infected 32 days after oral inoculation, presenting circulating gametocytes, parasitemia less than 1%, and positive PCR confirmed to be H. canis by DNA sequencing. The results obtained indicated A ovale ticks as potential vector of H. canis in rural areas of Brazil. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Serum samples were collected from 582 horses from 40 stud farms in the State of Sao Paulo and tick (Acari: Ixodidae) infestations were evaluated on them. Serum samples were subjected to the complement fixation test (CFT) and a competitive inhibition ELISA (cELISA) for Babesia caballi and Theileria equi. Logistic regression analyses were performed to construct multivariate models that could explain the dependent variable (horses positive for B. caballi or T equi) as a function of the independent variables (presence or abundance of each one of the rick species found on the farms). A higher overall prevalence of B. caballi (54.1%) than of T equi (21.6%) was found by the two tests. The ticks Dermacentor nitens Neumann, 1897, Amblyomma cajennense (Fabricius, 1787) and Rbipicephalus (Boopbilus) microplus (Canestrini, 1887) were present on horses on 38 (95%), 20 (50%), and 4 (10%) farms, respectively. Infestations by D. nitens were statistically associated with B. caballi-positive horses on the farms by either the CFT or cELISA. Infestations by A. cajennense were statistically associated with T equi-positive horses on the farms by either CFT or cELISA.
Resumo:
From May 2007 to March 2008, blood samples were collected from 92 healthy dogs living in 21 households (17 farms in rural area, and 4 homes in urban area) in 6 counties of the State of Espirito Santo, southeastern Brazil. In addition, ticks were collected from these dogs. A mean of 4.4 +/- 3.0 dogs (range: 1-12) were sampled per household; 78 and 14 dogs were from rural and urban areas, respectively. Polymerase chain reaction (PCR) designed to amplify fragments of the 18S rDNA gene of Babesia spp or Hepatozoon spp revealed amplicons of the expected size in 20 (21.7%) dogs for Babesia, and 54 (58.7%) dogs for Hepatozoon. All Babesia-positive dogs were also Hepatozoon-positive. Among the 21 households, 15 (71.4%) from 3 counties had at least one PCR-positive dog, including 13 farms (rural area) and 2 homes (urban area). A total of 40 PCR products from the Hepatozoon-PCR, and 19 products from the Babesia-PCR were submitted to DNA sequencing. All generated sequences from Hepatozoon-PCR were identical to each other, and to corresponding 18S rDNA sequences of H. canis in GenBank. Surprisingly, all generated sequences from the Babesia PCR were also identical to corresponding 18S rDNA sequences of H. canis in GenBank. Dogs from 10 rural and 2 urban households were found infested by Rhipicephalus sanguineus ticks. Immature of Amblyomma cajennense ticks were found in dogs from only 4 rural households (also infested by R. sanguineus). All but one household with R. sanguineus-infested dogs had at least one Hepatozoon-infected dog. Statistical analysis showed that the presence of ticks (i.e. R. sanguineus) infesting dogs in the households was significantly (P < 0.05) associated with at least one PCR-positive dog. There was no significant association (P > 0.05) between PCR-positive dogs and urban or rural households. Canine hepatozoonosis caused by H. canis is a high frequent infection in Espirito Santo, Brazil, where it is possibly vectored by R. sanguineus. Since all infected dogs were found apparently healthy, the pathogenicity of H. canis for dogs in Espirito Santo is yet to be elucidated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Amblyomma incisum Neumann is a major tick species in the Atlantic Forest of Brazil. Tapir is the main host for adult ticks and a high aggressiveness of nymphs to humans has been reported. In this work data on the biology and life cycle of this tick species is presented for the first time. It was shown that horse is a suitable host for A. incisum adults and rabbit for larvae and nymphs. It was also shown that A. incisum is a big tick species (mean engorged female weight of 1.96 g) with a long life cycle which lasts 262.3 days when maintained at 27A degrees C and 85% RH. These laboratory conditions were, however, inappropriate and egg hatching rate (1.2%) was very low. Nevertheless egg hatching of ticks in a forest patch increased considerably (72.2%) indicating that this A. incisum population is highly dependent on a forest-like environment.
Resumo:
This study investigated the etiology of canine ehrlichiosis and possible clinical and epidemiological data associated with the infection in 70 dogs suspect of ehrlichiosis attended at the Veterinary Hospital of the Sao Paulo State University in Botucatu city during 2001 and 2002. Dogs were evaluated by clinical-epidemiological and hematological data and molecular analysis by partial amplification and DNA sequencing of the ehrlichial dsb gene. E. canes DNA was amplified and sequenced in 28 (40.0%) dogs. Dogs younger than 12 months old showed significantly higher infection rates (65.0%; P < 0.05). Diarrhea, apathy, and anorexia were the major clinical signs observed in 55.2% (P = 0.05), 47.0% (P > 0.05), and 42.4% (P > 0.05) of the PCR-positive dogs, respectively. Twenty-five anemic (<5.5 x 10(6) RBC.mu L(-1)), and 8 leukopenic (<5.5 x 10(3) WBC.mu L(-1)) dogs were PCR-positive (P > 0.05). All 28 PCR-positive dogs showed thrombocytopenia (<175 x 10(3) platelets.mu L(-1)) and revealed statistical significance (P < 0.05). E. canis was the only Ehrlichia species found in dogs in the studied region, with higher infection rates in younger dogs, and statistically associated with thrombocytopenia.
Resumo:
Phlebotomine sand flies are the only proven biological vectors of Leishmania parasites. However, Rhipicephalus sanguineus ticks have long been suspected to transmit Leishmania infantum in studies carried out in laboratory and natural conditions. In the present study, 5 mu l of L. infantum promastigotes (1 x 10(6) cells per ml) was injected into the hemocel through the coxa 1 of four engorged females (F1, F2, F3 and F4). Control ticks (F5 and F6) were injected with sterile phosphate-buffered saline (PBS) using the same procedure. Then, these females, their eggs, and the originated larvae were tested by real time polymerase chain reaction (real-time PCR) for the presence of L. infantum kinetoplast DNA (kDNA). Females and eggs were tested after the end of the oviposition period (about 5 weeks post-inoculation) whereas larvae were tested about 4 months after the inoculation of females. All artificially infected females were positive for L. infantum kDNA. In addition, two pools of eggs (one from F2 and other from F4) and four pools of larvae (one from each F1 and F4 and two from F2) were positive for L infantum kDNA. These results showed, for the first time, the transovarial passage of L. infantum kDNA in R. sanguineus ticks, thus suggesting that the transovarial transmission of L. infantum protozoa in ticks is worth to be investigated. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The tick Amblyomma parkeri Fonseca and Arago was described in 1952, based on female and immature ticks collected in the states of So Paulo and Santa Catarina, Brazil. Thereafter, there has been no further report of A. parkeri, and the male has remained unknown. Herein, we examined ticks collected on porcupines from a locality in the state of So Paulo. Some of the ticks were identified as Amblyomma longirostre (Koch, 1844), whereas others as A. parkeri, including male specimens, for which we provide the first description. We also provide additional reports of A. parkeri after examining collections of A. longirostre and Amblyomma geayi Neumann, 1899 from different tick collections. Morphological evidence to support the original description of A. parkeri is presented, supported by molecular analyses of portions of the 16S rRNA and 12S rRNA mitochondrial genes. Morphological particularities to separate A. parkeri, A. longirostre, and A. geayi are provided.