942 resultados para thermal-hydraulic system codes
Resumo:
BP Refinery (Bulwer Island) Ltd (BP) located on the eastern Australian coast is currently undergoing a major expansion as a part of the Queensland Clean Fuels Project. The associated wastewater treatment plant upgrade will provide a better quality of treated effluent than is currently possible with the existing infrastructure, and which will be of a sufficiently high standard to meet not only the requirements of imposed environmental legislation but also BP's environmental objectives. A number of challenges were faced when considering the upgrade, particularly; cost constraints and limited plot space, highly variable wastewater, toxicity issues, and limited available hydraulic head. Sequencing Batch Reactor (SBR) Technology was chosen for the lagoon upgrade based on the following; SBR technology allowed a retro-fit of the existing earthen lagoon without the need for any additional substantial concrete structures, a dual lagoon system allowed partial treatment of wastewaters during construction, SBRs give substantial process flexibility, SBRs have the ability to easily modify process parameters without any physical modifications, and significant cost benefits. This paper presents the background to this application, an outline of laboratory studies carried out on the wastewater and details the full scale design issues and methods for providing a cost effective, efficient treatment system using the existing lagoon system.
Resumo:
Objective: To develop a 'quality use of medicines' coding system for the assessment of pharmacists' medication reviews and to apply it to an appropriate cohort. Method: A 'quality use of medicines' coding system was developed based on findings in the literature. These codes were then applied to 216 (111 intervention, 105 control) veterans' medication profiles by an independent clinical pharmacist who was supported by a clinical pharmacologist with the aim to assess the appropriateness of pharmacy interventions. The profiles were provided for veterans participating in a randomised, controlled trial in private hospitals evaluating the effect of medication review and discharge counselling. The reliability of the coding was tested by two independent clinical pharmacists in a random sample of 23 veterans from the study population. Main outcome measure: Interrater reliability was assessed by applying Cohen's kappa score on aggregated codes. Results: The coding system based on the literature consisted of 19 codes. The results from the three clinical pharmacists suggested that the original coding system had two major problems: (a) a lack of discrimination for certain recommendations e. g. adverse drug reactions, toxicity and mortality may be seen as variations in degree of a single effect and (b) certain codes e. g. essential therapy were in low prevalence. The interrater reliability for an aggregation of all codes into positive, negative and clinically non-significant codes ranged from 0.49-0.58 (good to fair). The interrater reliability increased to 0.72-0.79 (excellent) when all negative codes were excluded. Analysis of the sample of 216 profiles showed that the most prevalent recommendations from the clinical pharmacists were a positive impact in reducing adverse responses (31.9%), an improvement in good clinical pharmacy practice (25.5%) and a positive impact in reducing drug toxicity (11.1%). Most medications were assigned the clinically non-significant code (96.6%). In fact, the interventions led to a statistically significant difference in pharmacist recommendations in the categories; adverse response, toxicity and good clinical pharmacy practice measured by the quality use of medicine coding system. Conclusion: It was possible to use the quality use of medicine coding system to rate the quality and potential health impact of pharmacists' medication reviews, and the system did pick up differences between intervention and control patients. The interrater reliability for the summarised coding system was fair, but a larger sample of medication regimens is needed to assess the non-summarised quality use of medicines coding system.
Resumo:
The effects of various fallow management systems and cropping intensities on water infiltration were measured on an Alfisol at Ibadan in southwestern Nigeria. The objective was to determine the influence of the land use systems (a combination of crop-fallow sequences and intercropping types) on soil hydraulic properties obtained by disc permeameter and double-ring infiltration measurements. The experiment was established in 1989 as a split-plot design with four replications. The main plots were natural fallow, planted Pueraria phaseoloides and planted Leucaena leucocephala. The subplots were 1 year of maize/cassava intercrop followed by 3-year fallow (25% cropping intensity), or 2-year fallow (33% cropping intensity), or 1-year fallow (50% cropping intensity), or no fallow period (100% cropping intensity). Water infiltration rates and sorptivities were measured under saturated and unsaturated flow. Irrespective of land use, infiltration rates at the soil surface (121-324 cm h(-1)) were greater than those measured at 30 cm depth (55-144 cm h(-1)). This indicated that fewer large pores were present below 30 cm depth compared with 0-30 cm, depth. Despite some temporal variation, sorptivities with the highest mean value of 93.5 cm h(-1/2) increased as the cropping intensity decreased, suggesting a more continuous macropore system under less intensive land use systems. This was most likely due to continuous biopores created by perennial vegetation under long fallow systems. Intercropped maize and cassava yields also increased as cropping intensity decreased. The weak relationship between crop yields and hydraulic conductivity/infiltration rates suggests that the rates were not limiting.
Resumo:
The presence of entrapped air in pressurized hydraulic systems is considered a critical condition for the infrastructure security, due to the transient pressure enhancement related with its dynamic behaviour, similar to non-linear spring action. A mathematical model for the assessment of hydraulic transients resulting from rapid pressurizations, under referred condition is presented. Water movement was modeled through the elastic column theory considering a moving liquid boundary and the entrapped air pocket as lumped gas mass, where the acoustic effects are negligible. The method of characteristics was used to obtain the numerical solution of the liquid flow. The resulting model is applied to an experimental set-up having entrapped air in the top of a vertical pipe section and the numerical results are analyzed.
Resumo:
Electric vehicles (EV) offer a great potential to address the integration of renewable energy sources (RES) in the power grid, and thus reduce the dependence on oil as well as the greenhouse gases (GHG) emissions. The high share of wind energy in the Portuguese energy mix expected for 2020 can led to eventual curtailment, especially during the winter when high levels of hydro generation occur. In this paper a methodology based on a unit commitment and economic dispatch is implemented, and a hydro-thermal dispatch is performed in order to evaluate the impact of the EVs integration into the grid. Results show that the considered 10 % penetration of EVs in the Portuguese fleet would increase load in 3 % and would not integrate a significant amount of wind energy because curtailment is already reduced in the absence of EVs. According to the results, the EV is charged mostly with thermal generation and the associated emissions are much higher than if they were calculated based on the generation mix.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia com a Especialidade em Energia, Climatização e Refrigeração
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
In this work is discussed the importance of the renewable production forecast in an island environment. A probabilistic forecast based on kernel density estimators is proposed. The aggregation of these forecasts, allows the determination of thermal generation amount needed to schedule and operating a power grid of an island with high penetration of renewable generation. A case study based on electric system of S. Miguel Island is presented. The results show that the forecast techniques are an imperative tool help the grid management.
Resumo:
The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 232 – 235, Seattle, EUA
Resumo:
Hydraulic systems are dynamically susceptible in the presence of entrapped air pockets, leading to amplified transient reactions. In order to model the dynamic action of an entrapped air pocket in a confined system, a heuristic mathematical formulation based on a conceptual analogy to a mechanical spring-damper system is proposed. The formulation is based on the polytropic relationship of an ideal gas and includes an additional term, which encompasses the combined damping effects associated with the thermodynamic deviations from the theoretical transformation, as well as those arising from the transient vorticity developed in both fluid domains (air and water). These effects represent the key factors that account for flow energy dissipation and pressure damping. Model validation was completed via numerical simulation of experimental measurements.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
O recurso às energias renováveis é na actualidade um tema que atinge um grau de importância primordial face á crescente preocupação com o meio ambiente e o impacto negativo, que a produção de energia com base em combustíveis fósseis tem. Esta importância aliada a uma tendência cada vez maior para a criação de soluções de produção sustentável de energia, tem obrigado ao desenvolvimento desta vertente do sector energético e ao estudo e consequentemente implementação de soluções integradas que permitam uma economia competitiva. Os hotéis, sendo estabelecimentos comerciais que desenvolvem uma actividade que envolve, na generalidade, um nível de consumo energético considerável para garantir os seus serviços básicos de acomodação e lazer, tornam-se por excelência alvos primordiais no que concerne ao seu elevado potencial de poupança de energia. O ramo da hotelaria, dada a sua especificidade e a natureza dos edifícios que comporta, torna-os em excelentes candidatos para análise e optimização energética, e como tal um alvo de negócio para as empresas de comercialização de poupanças energéticas. As empresas dedicadas aos serviços de energia são conhecidas por ESCO (Energy Service Company ou Energy Savings Company). A sua actividade tem por base apresentar soluções de energia, nomeadamente a implementação de projectos de poupança energética que podem englobar produção, conservação e fornecimento de energia, bem como gestão de risco associada. O objectivo principal é apresentar soluções de optimização e eficiência energética levando á sua implementação em casos reais de exploração em edifícios ou sectores específicos, rentabilizando o investimento e partilhando o lucro dessa rentabilização com os clientes. No caso específico dos hotéis, mais concretamente um complexo de hotéis, como o estudado neste trabalho, esta análise pretende elaborar uma caracterização das necessidades energéticas do sector e apresentar um conjunto de soluções energéticas adequadas à realidade hoteleira. É também objecto de análise, toda a aproximação de um modelo de negócio energético a explorar por uma ESCO. O presente trabalho, realizado no âmbito da parceria entre a Gebio e a Confraria do Bom Jesus, tem por objectivo demonstrar as bases do contracto de performance entre uma empresa ESCO (Gebio – empresa concessionária do projecto) e um complexo de hotéis (constituído pelo Hotel do Lago, Hotel do Parque e Hotel do Templo), com vista a optimizar os consumos energéticos para a produção de energia térmica capaz de corresponder às necessidades do complexo. Foi desenvolvido um estudo completo das necessidades térmicas do complexo, com vista a projectar uma solução integrada de produção de energia térmica, com recurso a uma caldeira de biomassa, para os hotéis. Foi realizado um levantamento extensivo dos consumos e custos energético do complexo, nomeadamente para as águas quentes sanitárias. Desta análise obtiveram-se os custos reais do sistema e com os mesmos foi possível, numa primeira fase, elaborar os diversos projectos, hidráulico, eléctricos e civil, de forma a se definir a solução base e quais os orçamentos previstos para a instalação de um sistema de produção a biomassa, e numa segunda fase foi estudada a viabilidade da assinatura de um contracto de performance entre a ESCO e o complexo de hotéis.
Resumo:
Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty present in new structures. In order to overcome these limitations, and also to include the effects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed, using a simple structural model, similar to that used for current semi-probabilistic analysis.