984 resultados para theoretical physics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concept of biperfect (noncocommutative) weak Hopf algebras is introduced and their properties are discussed. A new type of quasi-bicrossed products is constructed by means of weak Hopf skew-pairs of the weak Hopf algebras which are generalizations of the Hopf pairs introduced by Takeuchi. As a special case, the quantum double of a finite dimensional biperfect (noncocommutative) weak Hopf algebra is built. Examples of quantum doubles from a Clifford monoid as well as a noncommutative and noncocommutative weak Hopf algebra are given, generalizing quantum doubles from a group and a noncommutative and noncocommutative Hopf algebra, respectively. Moreover, some characterizations of quantum doubles of finite dimensional biperfect weak Hopf algebras are obtained. (C) 2004 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The XXZ Gaudin model with generic integrable boundaries specified by generic non-diagonal K-matrices is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Braided m-Lie algebras induced by multiplication are introduced, which generalize Lie algebras, Lie color algebras and quantum Lie algebras. The necessary and sufficient conditions for the braided m-Lie algebras to be strict Jacobi braided Lie algebras are given. Two classes of braided m-Lie algebras are given, which are generalized matrix braided m-Lie algebras and braided m-Lie subalgebras of End(F)M, where M is a Yetter-Drinfeld module over B with dimB < infinity. In particular, generalized classical braided m-Lie algebras sl(q,f)(GM(G)(A),F) and osp(q,l)(GM(G)(A),M,F) of generalized matrix algebra GMG(A) are constructed and their connection with special generalized matrix Lie superalgebra sl(s,f)(GM(Z2)(A(s)),F) and orthosymplectic generalized matrix Lie super algebra osp(s,l) (GM(Z2)(A(s)),M-s,F) are established. The relationship between representations of braided m-Lie algebras and their associated algebras are established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtain a diagonal solution of the dual reflection equation for the elliptic A(n-1)((1)) solid-on-solid model. The isomorphism between the solutions of the reflection equation and its dual is studied. (C) 2004 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose an approach to optical quantum computation in which a deterministic entangling quantum gate may be performed using, on average, a few hundred coherently interacting optical elements (beam splitters, phase shifters, single photon sources, and photodetectors with feedforward). This scheme combines ideas from the optical quantum computing proposal of Knill, Laflamme, and Milburn [Nature (London) 409, 46 (2001)], and the abstract cluster-state model of quantum computation proposed by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application relevant to the Fermi sign problem, we calculate finite-temperature properties of the two dimensional Hubbard model and the dynamics in a simple model of coherent molecular dissociation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poisson representation techniques provide a powerful method for mapping master equations for birth/death processes -- found in many fields of physics, chemistry and biology -- into more tractable stochastic differential equations. However, the usual expansion is not exact in the presence of boundary terms, which commonly occur when the differential equations are nonlinear. In this paper, a gauge Poisson technique is introduced that eliminates boundary terms, to give an exact representation as a weighted rate equation with stochastic terms. These methods provide novel techniques for calculating and understanding the effects of number correlations in systems that have a master equation description. As examples, correlations induced by strong mutations in genetics, and the astrophysical problem of molecule formation on microscopic grain surfaces are analyzed. Exact analytic results are obtained that can be compared with numerical simulations, demonstrating that stochastic gauge techniques can give exact results where standard Poisson expansions are not able to.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present phase-space techniques for the modelling of spontaneous emission in two-level bosonic atoms. The positive-P representation is shown to give a full and complete description within the limits of our model. The Wigner representation, even when truncated at second order, is shown to need a doubling of the phase-space to allow for a positive-definite diffusion matrix in the appropriate Fokker-Planck equation and still fails to agree with the full quantum results of the positive-P representation. We show that quantum statistics and correlations between the ground and excited states affect the dynamics of the emission process, so that it is in general non-exponential. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a unified Gaussian quantum operator representation for fermions and bosons. The representation extends existing phase-space methods to Fermi systems as well as the important case of Fermi-Bose mixtures. It enables simulations of the dynamics and thermal equilibrium states of many-body quantum systems from first principles. As an example, we numerically calculate finite-temperature correlation functions for the Fermi Hubbard model, with no evidence of the Fermi sign problem. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly localized positive-energy states of the free Dirac electron are constructed and shown to evolve in a simple way under the action of Dirac's equation. When the initial uncertainty in position is small on the scale of the Compton wavelength, there is an associated uncertainty in the mean energy that is large compared with the rest mass of the electron. However, this does not lead to any breakdown of the one-particle description, associated with the possibility of pair-production, but rather leads to a rapid expansion of the probability density outwards from the point of localization, at speeds close to the speed of light.