955 resultados para theorem
Resumo:
In 1900 E. B. Van Vleck proposed a very efficient method to compute the Sturm sequence of a polynomial p (x) ∈ Z[x] by triangularizing one of Sylvester’s matrices of p (x) and its derivative p′(x). That method works fine only for the case of complete sequences provided no pivots take place. In 1917, A. J. Pell and R. L. Gordon pointed out this “weakness” in Van Vleck’s theorem, rectified it but did not extend his method, so that it also works in the cases of: (a) complete Sturm sequences with pivot, and (b) incomplete Sturm sequences. Despite its importance, the Pell-Gordon Theorem for polynomials in Q[x] has been totally forgotten and, to our knowledge, it is referenced by us for the first time in the literature. In this paper we go over Van Vleck’s theorem and method, modify slightly the formula of the Pell-Gordon Theorem and present a general triangularization method, called the VanVleck-Pell-Gordon method, that correctly computes in Z[x] polynomial Sturm sequences, both complete and incomplete.
Resumo:
2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A36.
Resumo:
2000 Mathematics Subject Classification: 30C10.
Resumo:
MSC 2010: 54A25, 54A35.
Resumo:
MSC 2010: 30C10
Resumo:
AMS Subj. Classification: 30C45
Resumo:
MSC 2010: 33C20
Resumo:
2000 Mathematics Subject Classification: 30C45
Resumo:
The converse statement of the Filippov-Wazewski relaxation theorem is proven, more precisely, two differential inclusions have the same closure of their solution sets if and only if the right-hand sides have the same convex hull. The idea of the proof is examining the contingent derivatives to the attainable sets.
Resumo:
We consider an infinite exchange economy with countably many traders, which can be regarded as a natural extension of finite exchange economies to an infinite one. In our countable economy the core defined in the traditional manner would be empty. To avoid this unwanted situation we have to strengthen the notion of “improves upon”. We will achieve this based on the idea that forming coalitions involve costs.
Resumo:
In the article we shortly discuss the proof of the theorem of Dalang-Morton-Willinger. We show that the proof of the theorem depends on some interesting general properties of the stochastic convergence.
Resumo:
A pénzügyi eszközök árazásának alaptétele - kissé pongyolán megfogalmazva - azt állítja, hogy egy értékpapírpiacon akkor nincs arbitrázs, ha létezik egy az eredetivel ekvivalens valószínűségi mérték, amelyre vonatkozóan az értékpapírok árait leíró folyamat egy bizonyos értelemben "martingál". Az első ilyen jellegű állítást M. Harrison és S. R. Pliska bizonyították arra esetre, amikor a valószínűségi mező végesen generált. Azóta a tételnek számos általánosítása született. Ezek közül az egyik legismertebb a Dalang{Morton{ Willinger-tétel, ami már teljesen általános valószínűségi mezőből indul ki, de felteszi, hogy az időparaméter diszkrét, és az időhorizont véges. Időközben a tételnek számos folytonos időparaméterű folyamatokra vonatkozó változata is született. Az alaptételt általános esetben, vagyis amikor valószínűségi mező teljesen általános, és az értékpapírok piaci árait leíró folyamat lokálisan korlátos szemimartingál, Delbaen és W. Schachermayer bizonyították be. A Delbaen{Schachermayer-féle alaptétel a maga nemében egy igen általános áll ítás. A tétel bizonyítása igen hosszadalmas, és a funkcionálanalízis valamint a sztochasztikus folyamatok általános elméletének mély eredményeit használja. Utóbbi tudományterület nagy részét P. A. Meyer és a francia strassbourgi iskola matematikusai dolgozták ki a 60-as évek végétől kezdve. A terület megértését tehát alaposan megnehezíti, hogy a felhasznált matematikai apparátus viszonylag friss, egy része pedig csak francia nyelven érhető el. Meggyőződésünk szerint az eredeti, 1994-es Delbaen és Schachermayer-féle bizonyítás csak kevesek által hozzáférhető. A tételnek tudomásunk szerint azóta sem született tankönyvi feldolgozása, annak ellenére, hogy maga az állítás közgazdász körökben is széles körben ismerté vált, és az eredeti cikket számos szerző idézi. Az itt bemutatott bizonyítás Delbaen és Schachermayer 1992 és 2006 közötti írásain alapul. ______ The Delbaen and Schachermayer's theorem is one of the deepest results of mathematical finance. In this article we tried to rethink and slightly simplify the original proof of the theorem to make understandable for nonspecialists who are familiar with general theory of stochastic processes. We give a detailed proof of the theorem and we give new proofs for some of the used statements.
Resumo:
A dolgozatban röviden bemutatjuk az eszközárazás második alaptételét. A bizonyítás során felhasználjuk a Dalang-Morton-Wilinger tétel bizonyításában használt állításokat. ______ In the article we summarize the results about the second fundamental theorem of asset pricing.
Resumo:
Peer reviewed