984 resultados para temperature-programmed techniques


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PTCR barium titanate has been prepared following two different powder preparation techniques: the solid-state reaction route and co-precipitation route for the comparison of results. The co-precipitation route produces better PTCR characteristics with low room temperature resistivity and better reproducibility of prepared samples. The effects of different concentrations of additives like donors, acceptors and excess titanium have been optimized to get good quality PTCR samples. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense and broad photoluminescence (PL) emission at room temperature was observed on structurally disordered Ba[Zr0.25Ti0.75]O-3 (BZT) powders synthesized by the polymeric precursor method. BZT powders were annealed at 573 K for different times and at 973 K for 2 h in oxygen atmosphere. The single-phase cubic perovskite structure of the powder annealed at 973 K for 2 It was identified by X-ray diffraction and Fourier transform Raman techniques. PL emission increased with the increase of annealing time, which reached its maximum value in the powder annealed at 573 K for 192 h. First principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered models. The theoretical calculations and experimental measurements of Ultraviolet-visible absorption spectroscopy indicate that the presence of intermediary energy levels in the band gap is favorable for the intense and broad PL emission at room temperature in disordered BZT powders. The PL behavior is probably due the existence of a charge gradient on the disordered structure, denoted by means of a charge transfer process from [TiO5]-[ZrO6] or [TiO6]-[ZrO5] clusters to [TiO6]-[ZrO6] clusters. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative analysis of the photosynthetic responses to temperature (10-30°C) was carried out under short-term laboratory conditions by chlorophyll fluorescence and oxygen (O2) evolution. Ten lotic macroalgal species from southeastern Brazil (20°11-20°48′S, 49°18-49°41′W) were tested, including Bacillariophyta, Chlorophyta, Cyanophyta, Rhodophyta and Xanthophyta. Temperature had significant effects on electron transport rate (ETR) only for three species (Terpsinoe musica, Bacillariophyta; Cladophora glomerata, Chlorophyta; and C. coeruleus, Rhodophyta), with highest values at 25-30°C, whereas the remaining species had no significant responses. It also had similar effects on non-photochemical quenching and ETR. Differences in net photosynthesis/dark respiration ratios at distinct temperatures were found, with an increasing trend of respiration with higher temperatures. This implies in a decreasing balance between net primary production and temperature, representing more critical conditions toward higher temperatures for most species. In contrast, high net photosynthesis and photosynthesis/dark respiration ratios at high and wide ranges of temperature were found in three species of green algae, suggesting that these algae can be important primary producers in lotic ecosystems, particularly in tropical regions. Optimal photosynthetic rates were observed under similar environmental temperatures for five species (two rhodophytes, two chlorophytes and one diatom) considering both techniques, suggesting acclimation to their respective ambient temperatures. C. coeruleus was the only species with peaks of ETR and O 2 evolution under similar field-measured temperatures. All species kept values of ETR and net photosynthesis close to the optimum under a broad range of temperatures. Increased non-photochemical quenching, as a measure of thermal dissipation of excess energy, toward higher temperatures was observed in some species, as well as positive correlation of non-photochemical quenching with ETR, and were interpreted as two mechanisms of adaptation of the photosynthetic apparatus to temperature changes. Different optimal temperatures were found for individual species by each technique, generally under lower temperatures by O2 evolution, indicating dependence on distinct factors: increases in temperature generally induced higher ETR due to increased enzymatic activity, whereas increments of enzymatic activity were compensated by increased respiration and photorespiration leading to decreases in net photosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N6,2,2,2][N(Tf)2], 1-butyl-3-methylimidazolium hexafluorosphosphate [C4mim][PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C4mpyrr][N(Tf)2], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][N(Tf)2], N-butyl-N-methyl-pyrrolidinium dicyanamide [C4mpyrr][N(NC)2] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P14,6,6,6][FAP] on a platinum microelectrode. In [N6,2,2,2][NTf2] and [P14,6,6,6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P14,6,6,6][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N6,2,2,2][NTf2] and [P14,6,6,6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. © 2009 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By combining galvanic displacement and electrodeposition techniques, an ordered Fe20Rh80 structure deposited onto brass was investigated by X-ray diffractometry, Mössbauer spectroscopy and magnetization measurements. Mössbauer and X-ray diffraction analyses suggest that the Fe-Rh alloy directly electrodeposited onto brass displays a nanocrystalline state while a similar alloy deposited onto Ag/brass shows a faced centered cubic-like structure, with dendrites-like features. These results directly indicate that the presence of Ag seed layer is responsible for the Fe-Rh alloy crystallization process. In addition, room temperature Mössbauer data indicate firstly paramagnetic states for two Fe-species. In the dominant Fe-species (major fraction of the Mössbauer spectra), Fe atoms are situated at a cubic environment and it can be attributed to the γ-Fe20Rh80 alloy based on their hyperfine parameters. In the second species, Fe atoms are placed in a non-local symmetry, which can be related to Fe atoms at the grain boundaries or/and Fe small clusters. These Fe-clusters are in superparamagnetic state at room temperature, but they may be ordered below 45 K, as suggested by magnetization data. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the effects of constant low-temperature storage on Diaeretiella rapae (McIntosh) (Braconidae, Aphidiinae). Diaeretiella rapae mummies were stored at 5 ± 1°C for 0-36 days. The percentage of D. rapae emergence varied (100-83%) after 0-32 days of storage. After 32 days, emergence reduced to 55%. According to our Probit analysis, 50% mortality (LT50) of the population of D. rapae was reached after 40 days of storage at 5°C. Storage for up to 32 days did not negatively affect emergence and survival. Cold exposure of D. rapae for 36 days did not influence morphological malformations, sex ratio, and emergence of the F1 generation. After 4-36 days of storage, D. rapae showed a gradual decrease in emergence, longevity, reproductive capacity, and F1 sex ratio. Diaeretiella rapae can be stored for up to 24 days at 5°C, at which time the percentage of parasitism and the F1 sex ratio remain above 38% and at 0.50, respectively. © 2013 Sociedade Entomológica do Brasil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The present work uses multivariate statistical analysis as a form of establishing the main sources of error in the Quantitative Phase Analysis (QPA) using the Rietveld method. The quantitative determination of crystalline phases using x ray powder diffraction is a complex measurement process whose results are influenced by several factors. Ternary mixtures of Al2O3, MgO and NiO were prepared under controlled conditions and the diffractions were obtained using the Bragg-Brentano geometric arrangement. It was possible to establish four sources of critical variations: the experimental absorption and the scale factor of NiO, which is the phase with the greatest linear absorption coefficient of the ternary mixture; the instrumental characteristics represented by mechanical errors of the goniometer and sample displacement; the other two phases (Al2O3 and MgO); and the temperature and relative humidity of the air in the laboratory. The error sources excessively impair the QPA with the Rietveld method. Therefore it becomes necessary to control them during the measurement procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5- disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl- 1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine R-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino R-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 °C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'- tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine α-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl α-end-functionalized polystyrene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L. Antonangelo, F. S. Vargas, M. M. P. Acencio, A. P. Cora, L. R. Teixeira, E. H. Genofre and R. K. B. Sales Effect of temperature and storage time on cellular analysis of fresh pleural fluid samples Objective: Despite the methodological variability in preparation techniques for pleural fluid cytology, it is fundamental that the cells should be preserved, permitting adequate morphological classification. We evaluated numerical and morphological changes in pleural fluid specimens processed after storage at room temperature or under refrigeration. Methods: Aliquots of pleural fluid from 30 patients, collected in ethylenediaminetetraacetic acid-coated tubes and maintained at room temperature (21 degrees C) or refrigeration (4 degrees C) were evaluated after 2 and 6 hours and 1, 2, 3, 4, 7 and 14 days. Evaluation of cytomorphology and global and percentage counts of leucocytes, macrophages and mesothelial cells were included. Results: The samples had quantitative cellular variations from day 3 or 4 onwards, depending on the storage conditions. Morphological alterations occurred earlier in samples maintained at room temperature (day 2) than in those under refrigeration (day 4). Conclusions: This study confirms that storage time and temperature are potential pre-analytical causes of error in pleural fluid cytology.