989 resultados para technological innovation, climate change
Resumo:
Climate affects the custard apple industry in a range of ways through impacts on growth, disease risk, fruit set and industry location. Climates in Australia are influenced by surrounding oceans, and are very variable from year to year. However, amidst this variability there are significant trends, with Australian annual mean temperatures increasing since 1910, and particularly since 1950, with night-time temperatures increasing faster (0.11oC/decade) than daytime temperatures (0.06oC/decade). These temperature increases and other climate changes are expected to continue as a result of greenhouse gas emissions, with ongoing impacts on the custard apple industry. Five sites were chosen to assess possible future climate changes : Mareeba, Yeppoon, Bundaberg, Nambour and Lismore, these sites representing the extent of the majority of custard apple production in eastern Australia. A fifth site (Coffs Harbour) was selected as it is south of the current production regions. A mean warming of 0.8 to 1.2oC is anticipated over most of these sites by the year 2030, relative to 1990. This paper assesses the potential effects of climate change on custard apple production, and suggests strategies for adaptation.
Resumo:
Climate change is emerging as the single greatest threat to coral-reef ecosystems.The most immediate impacts will be a loss of diversity and changes to fish community composition and may lead to eventual declines in abundance and productivity of key fisheries species. A key component of this research is to assess effects of projected changes in environmental conditions (temperature and ocean acidity) due to climate change on reproduction, growth and development of coral trout (Plectropomus leopardis).Ultimately, this research will fill key knowledge gaps about climate change impacts on larger fishes, which are fundamental to optimizing resilience-based management, and in turn improve the adaptive capacity of industries and communities along the Great Barrier Reef.
Resumo:
This application was developed in response to the widely recognised concern that climate change will result in changes to marine life and ecosystems, and hence fisheries, throughout Australia with tropical marine ecosystems in northern Australia identified as being particularly vulnerable. These changes are predicted to vary spatially depending on local climate and biophysical processes. Northern Australia is one of three major Australian regions predicted to be impacted. The project addresses the important FRDC strategic challenge of improving the management of aquatic natural resources to ensure their sustainability through research and management that accounts for the effects that climate change may have on the resources.
Resumo:
Aims to build adaptive capacity within Qld's mixed farming (cropping/beef) sector.
Resumo:
Based on a survey of climate change experts in different stakeholder groups and interviews with corporate climate change managers, this study provides insights into the gap between what information stakeholders expect, and what Australian corporations disclose. This paper focuses on annual reports and sustainability reports with specific reference to the disclosure of climate change-related corporate governance practices. The findings culminate in the governance practises. Interview results indicate that the low levels of disclosures made by Australian companies may be due to a number of factors. A lack of proactive stakeholder engagement and an apparent preoccupation with financial performance and advancing shareholders interest, coupled with a failure by managers to accept accountability, seems to go a long way to explaining low levels of disclosure.
Resumo:
As an art form, film has arguably always functioned as a stronghold for memory. Memories unfold in the stories told on screen, and remain preserved in the experiences of the audience viewing the film, at a particular time and place. The environment of a film festival further alters the viewing experience and its relationship to memory. The Brisbane International Film Festival (BIFF) was founded in 1992. After considerable disruption due to economic and socio-political changes, it took place for the last time in 2013. The change in BIFF’s leadership and programming agenda significantly impacted the festival’s image and its position on the wider festival circuit. Through an examination of cinema and memory) it will be argued that film festivals operate as (temporary) sites of memory, through the programming and screening of films, engagement with local audiences, and promotion of film culture. This specific and unique ‘festival memory’ inextricably links to the audience and the venue, and is curated by the festival programmers and staff, who carry a wealth of knowledge (not necessarily recorded), of past festivals, successes, and failures. The people involved, the festival staff and audience, act as caretakers of this ‘festival memory.’ This essay will therefore examine how the BIFF and its home, the Regent Theatre, have functioned as crucial ‘sites of memory’ for film and film culture in Brisbane, Australia.
Resumo:
The rapid expansion of the international film festival circuit has included the loss of smaller, but well established festivals, often due to the perceived need for constant innovation and change. The Brisbane International Film Festival was founded in 1992. After considerable disruption to the festival’s leadership, programme and location due to economic and socio-political changes, it was held for the last time in 2013. Nafus and Anderson cite the term ‘lieux de memoire’, meaning ‘sites of memory’, as a place of “remembrance that exist(s) in a social world that constantly seeks to get ahead of itself, to “innovate” (Nafus and Anderson in Cefkin 2009, 141). The concept of ‘festival memory’ has not yet been explored in any depth, but such significant shifts in festivals such as BIFF are arguably sites where festival histories and identities, and film knowledge itself, can be irretrievably lost.
Resumo:
Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO.
Resumo:
- Problem Climate change is affecting the world in numerous ways such as increased temperatures, sea level rise, and increased droughts and floods. Governments worldwide, especially in the most vulnerable countries, are urged to seek better solutions for sustainable development. The construction industry and buildings have enormous impacts on humans and the environment, meaning green building must be one of the solutions. Government involvement is widely considered as one of the essential and most effective ways to promote green building and drive the construction market towards sustainability. This paper will review green building policy of the Pacific-Rim countries that are most vulnerable to climate change according to the recent Standard and Poor’s ranking, including: Cambodia, Vietnam, Fiji, Philippines, Papua New Guinea and Indonesia. Methodology: This paper will review policy related publications including journal and conference papers, portal websites of governments, legislation documents and reports of international organisations. It will focus on the policies and governmental instruments that support the adoption of green building practices. - Findings All six governments have launched climate change adaptation policies, showing a great concern regarding the damages caused by the phenomenon. All countries except Papua New Guinea have promulgated energy efficiency policy and programs which indirectly promote the adoption of green building practices. The comparison study shows that Philippines and Indonesia motivate the adoption of renewable energy generation, energy efficiency and green building through either financial or advocacy instruments, while other four countries tend to implement regulatory tools to mandate energy conservation. Through comparison, Cambodia and Vietnam – the two countries providing vision to develop green building - can learn from Philippines and Indonesia’s policy and instruments. - Research limitations Language differences between the countries and limit of formal sources may pose difficulties in searching for information. While much English language literature exists, sources from Cambodia, Philippines and Indonesia are less accessible. - Takeaway for practice As the paper provides more understanding about the supportive policy of those countries, it will introduce more opportunities for green property developers to invest in construction markets of those Pacific-Rim countries. - Originality There is little research reviewing green building supportive policies of developing and less-wealthy countries that are forecasted to be most vulnerable and most impacted by climate change. The originality of this paper lies in its investigation on how those countries intend to respond to this phenomenon and whether and to what extent they support the green building market by using policy tools.
Resumo:
This study presents the use of a whole farm model in a participatory modelling research approach to examine the sensitivity of four contrasting case study farms to a likely climate change scenario. The newly generated information was used to support discussions with the participating farmers in the search for options to design more profitable and sustainable farming systems in Queensland Australia. The four case studies contrasted in key systems characteristics: opportunism in decision making, i.e. flexible versus rigid crop rotations; function, i.e. production of livestock or crops; and level of intensification, i.e. dryland versus irrigated agriculture. Tested tactical and strategic changes under a baseline and climate change scenario (CCS) involved changes in the allocation of land between cropping and grazing enterprises, alternative allocations of limited irrigation water across cropping enterprises, and different management rules for planting wheat and sorghum in rainfed cropping. The results show that expected impacts from a likely climate change scenario were evident in the following increasing order: the irrigated cropping farm case study, the cropping and grazing farm, the more opportunistic rainfed cropping farm and the least opportunistic rainfed cropping farm. We concluded that in most cases the participating farmers were operating close to the efficiency frontier (i.e. in the relationship between profits and risks). This indicated that options to adapt to climate change might need to evolve from investments in the development of more innovative cropping and grazing systems and/or transformational changes on existing farming systems. We expect that even though assimilating expected changes in climate seems to be rather intangible and premature for these farmers, as innovations are developed, adaptation is likely to follow quickly. The multiple interactions among farm management components in complex and dynamic farm businesses operating in a variable and changing climate, make the use of whole farm participatory modelling approaches valuable tools to quantify benefits and trade-offs from alternative farming systems designs in the search for improved profitability and resilience.
Resumo:
There is an increasing need to understand what makes vegetation at some locations more sensitive to climate change than others. For savanna rangelands, this requires building knowledge of how forage production in different land types will respond to climate change, and identifying how location-specific land type characteristics, climate and land management control the magnitude and direction of its responses to change. Here, a simulation analysis is used to explore how forage production in 14 land types of the north-eastern Australian rangelands responds to three climate change scenarios of +3A degrees C, +17% rainfall; +2A degrees C, -7% rainfall; and +3A degrees C, -46% rainfall. Our results demonstrate that the controls on forage production responses are complex, with functional characteristics of land types interacting to determine the magnitude and direction of change. Forage production may increase by up to 60% or decrease by up to 90% in response to the extreme scenarios of change. The magnitude of these responses is dependent on whether forage production is water or nitrogen (N) limited, and how climate changes influence these limiting conditions. Forage production responds most to changes in temperature and moisture availability in land types that are water-limited, and shows the least amount of change when growth is restricted by N availability. The fertilisation effects of doubled atmospheric CO2 were found to offset declines in forage production under 2A degrees C warming and a 7% reduction in rainfall. However, rising tree densities and declining land condition are shown to reduce potential opportunities from increases in forage production and raise the sensitivity of pastures to climate-induced water stress. Knowledge of these interactions can be applied in engaging with stakeholders to identify adaptation options.
Resumo:
West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate
Resumo:
Abstract The paper evaluates the effect of future climate change (as per the CSIRO Mk3.5 A1FI future climate projection) on cotton yield in Southern Queensland and Northern NSW, eastern Australia by using of the biophysical simulation model APSIM (Agricultural Production Systems sIMulator). The simulations of cotton production show that changes in the influential meteorological parameters caused by climate change would lead to decreased future cotton yields without the effect of CO2 fertilisation. By 2050 the yields would decrease by 17 %. Including the effects of CO2 fertilisation ameliorates the effect of decreased water availability and yields increase by 5.9 % by 2030, but then decrease by 3.6 % in 2050. Importantly, it was necessary to increase irrigation amounts by almost 50 % to maintain adequate soil moisture levels. The effect of CO2 was found to have an important positive impact of the yield in spite of deleterious climate change. This implies that the physiological response of plants to climate change needs to be thoroughly understood to avoid making erroneous projections of yield and potentially stifling investment or increasing risk.