978 resultados para systemic effects
Resumo:
Previous studies have reported that a diet containing 10% cocoa, a rich source of flavonoids, has immunomodulatory effects on rats and, among others effects, is able to attenuate the immunoglobulin (Ig) synthesis in both systemic and intestinal compartments. The purpose of the present study was focused on investigating whether these effects were attributed exclusively to the flavonoid content or to other compounds present in cocoa. To this end, eight-week-old Lewis rats were fed, for two weeks, either a standard diet or three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0.2% polyphenols from conventional defatted cocoa, and two others with 0.4% and 0.8% polyphenols, respectively, from non-fermented cocoa. Diet intake and body weight were monitored and fecal samples were obtained throughout the study to determine fecal pH, IgA, bacteria proportions, and IgA-coated bacteria. Moreover, IgG and IgM concentrations in serum samples collected during the study were quantified. At the end of the dietary intervention no clear changes of serum IgG or IgM concentrations were quantified, showing few effects of cocoa polyphenol diets at the systemic level. However, in the intestine, all cocoa polyphenol-enriched diets attenuated the age-related increase of both fecal IgA and IgA-coated bacteria, as well as the proportion of bacteria in feces. As these effects were not dependent on the dose of polyphenol present in the diets, other compounds and/or the precise polyphenol composition present in cocoa raw material used for the diets could be key factors in this effect.
Resumo:
PURPOSE: To evaluate the safety and efficacy of an intravitreal fluocinolone acetonide (FA) implant compared with standard therapy in subjects with noninfectious posterior uveitis (NIPU). DESIGN: Randomized, controlled, phase 2b/3, open-label, multicenter superiority trial. PARTICIPANTS: Subjects with unilateral or bilateral NIPU. METHODS: One hundred forty subjects received either a 0.59-mg FA intravitreal implant (n = 66) or standard of care (SOC; n = 74) with either systemic prednisolone or equivalent corticosteroid as monotherapy (> or =0.2 mg/kg daily) or, if judged necessary by the investigator, combination therapy with an immunosuppressive agent plus a lower dose of prednisolone or equivalent corticosteroid (> or =0.1 mg/kg daily). MAIN OUTCOME MEASURES: Time to first recurrence of uveitis. RESULTS: Eyes that received the FA intravitreal implant experienced delayed onset of observed recurrence of uveitis (P<0.01) and a lower rate of recurrence of uveitis (18.2% vs. 63.5%; P< or =0.01) compared with SOC study eyes. Adverse events frequently observed in implanted eyes included elevated intraocular pressure (IOP) requiring IOP-lowering surgery (occurring in 21.2% of implanted eyes) and cataracts requiring extraction (occurring in 87.8% of phakic implanted eyes). No treatment-related nonocular adverse events were observed in the implant group, whereas such events occurred in 25.7% of subjects in the SOC group. CONCLUSIONS: The FA intravitreal implant provided better control of inflammation in patients with uveitis compared with systemic therapy. Intraocular pressure and lens clarity of implanted eyes need close monitoring in patients receiving the FA intravitreal implant.
Resumo:
OBJECTIVE: We developed interferon-α-kinoid (IFN-K), a drug composed of inactivated IFNα coupled to a carrier protein, keyhole limpet hemocyanin. In human IFNα-transgenic mice, IFN-K induces polyclonal antibodies that neutralize all 13 subtypes of human IFNα. We also previously demonstrated that IFN-K slows disease progression in a mouse model of systemic lupus erythematosus (SLE). This study was undertaken to examine the safety, immunogenicity, and biologic effects of active immunization with IFN-K in patients with SLE. METHODS: We performed a randomized, double-blind, placebo-controlled, phase I/II dose-escalation study comparing 3 or 4 doses of 30 μg, 60 μg, 120 μg, or 240 μg of IFN-K or placebo in 28 women with mild to moderate SLE. RESULTS: IFN-K was well tolerated. Two SLE flares were reported as serious adverse events, one in the placebo group and the other in a patient who concomitantly stopped corticosteroids 2 days after the first IFN-K dose, due to mild fever not related to infection. Transcriptome analysis was used to separate patients at baseline into IFN signature-positive and -negative groups, based on the spontaneous expression of IFN-induced genes. IFN-K induced anti-IFNα antibodies in all immunized patients. Notably, significantly higher anti-IFNα titers were found in signature-positive patients than in signature-negative patients. In IFN signature-positive patients, IFN-K significantly reduced the expression of IFN-induced genes. The decrease in IFN score correlated with the anti-IFNα antibody titer. Serum complement C3 levels were significantly increased in patients with high anti-IFNα antibody titers. CONCLUSION: These results show that IFN-K is well tolerated, immunogenic, and significantly improves disease biomarkers in SLE patients, indicating that further studies of its clinical efficacy are warranted.
Resumo:
The low GFR of newborns is maintained by various factors including the renin-angiotensin system. We previously established the importance of angiotensin II in the newborn kidney, using the angiotensin-converting enzyme inhibitor perindoprilat. The present study was designed to complement these observations by evaluating the role of angiotensin-type 1 (AT(1)) receptors, using losartan, a specific AT(1)-receptor blocker. Increasing doses of losartan were infused into anesthetized, ventilated, newborn rabbits. Renal function and hemodynamic variables were assessed using inulin and para-aminohippuric acid clearances as markers of GFR and renal plasma flow, respectively. Losartan 0.1 mg/kg slightly decreased mean blood pressure (-11%) and increased diuresis (+22%). These changes can be explained by inhibition of the AT(1)-mediated vasoconstrictive and antidiuretic effects of angiotensin, and activation of vasodilating and diuretic AT(2) receptors widely expressed in the neonatal period. GFR and renal blood flow were not modified. Losartan 0.3 mg/kg decreased mean blood pressure significantly (-15%), probably by inhibiting systemic AT(1) receptors. GFR significantly decreased (-25%), whereas renal blood flow remained stable. The decrease in filtration fraction (-21%) indicates predominant efferent vasodilation. At 3 mg/kg, the systemic hypotensive effect of losartan was marked (mean blood pressure, -28%), with decreased GFR and renal blood flow (-57% and -51%, respectively), a stable filtration fraction, and an increase in renal vascular resistance by 124%. The renal response to this dose can be considered as reflex vasoconstriction of afferent and efferent arterioles, rather than specific receptor antagonism. We conclude that under physiologic conditions, the renin-angiotensin is critically involved in the maintenance of GFR in the immature kidney.
Resumo:
Summary: Particulate air pollution is associated with increased cardiovascular risk. The induction of systemic inflammation following particle inhalation represents a plausible mechanistic pathway. The purpose of this study was to assess the associations of short-term exposure to ambient particulate matters of aerodynamic diameter less than 10 μm (PM10) with circulating inflammatory markers in 6183 adults in Lausanne, Switzerland. The results show that short-term exposure to PM10 was associated with higher levels of circulating IL-6 and TNF-α. The positive association of PM10 with markers of systemic inflammation materializes the link between air pollution and cardiovascular risk. Background: Variations in short-term exposure to particulate matters (PM) have been repeatedly associated with daily all-cause mortality. Particle-induced inflammation has been postulated to be one of the important mechanisms for increased cardiovascular risk. Experimental in-vitro, in-vivo and controlled human studies suggest that interleukin 6 (IL-6) and tumor-necrosis-factor alpha (TNF-α) could represent key mediators of the inflammatory response to PM. The associations of short-term exposure to ambient PM with circulating inflammatory markers have been inconsistent in studies including specific subgroups so far. The epidemiological evidence linking short-term exposure to ambient PM and systemic inflammation in the general population is scarce. So far, large-scale population-based studies have not explored important inflammatory markers such as IL-6, IL-1β or TNF-α. We therefore analyzed the associations between short-term exposure to ambient PM10 and circulating levels of high-sensitive CRP (hs-CRP), IL-6, IL-1β and TNF-α in the population-based CoLaus study. Objectives: To assess the associations of short-term exposure to ambient particulate matters of aerodynamic diameter less than 10 μm (PM10) with circulating inflammatory markers, including hs-CRP, IL-6, IL-1β and TNF-α, in adults aged 35 to 75 years from the general population. Methodology: All study subjects were participants to the CoLaus study (www.colaus.ch) and the baseline examination was carried out from 2003 to 2006. Overall, 6184 participants were included. For the present analysis, 6183 participants had data on at least one of the four measured circulating inflammatory markers. The monitoring data was obtained from the website of Swiss National Air Pollution Monitoring Network (NABEL). We analyzed data on PM10 as well as outside air temperature, pressure and humidity. Hourly concentrations of PM10 were collected from 1 January 2003 to 31 December 2006. Robust linear regression (PROC ROBUSTREG) was used to evaluate the relationship between cytokine inflammatory and PM10. We adjusted all analyses for age, sex, body mass index, smoking status, alcohol consumption, diabetes status, hypertension status, education levels, zip code, and statin intake. All data were adjusted for the effects of weather by including temperature, barometric pressure, and season as covariates in the adjusted models. We performed simple and multiple logistic regression analyses. Descriptive statistical analysis used the Wilcoxon rank sum test (for medians). All data analyses were performed using SAS software (version 9.2; SAS Institute Inc., Cary, NC, USA), and a two-sided significance level of 5% was used. Results: PM10 levels averaged over 24 hours were significantly and positively associated with continuous IL-6 and TNF-α levels, in the whole study population both in unadjusted and adjusted analyses. For each cytokine, there was a similar seasonal pattern, with wider confidence intervals in summer than during the other seasons, which might partly be due to the smaller number of participants examined in summer. The associations of PM10 with IL-6 and TNF-α were also found after having dichotomized these cytokines into high versus low levels, which suggests that the associations of PM10 with the continuous cytokine levels are very robust to any distributional assumption and to potential outlier values. In contrast with what we observed for continuous IL-1β levels, high PM10 levels were significantly associated with high IL-1β. PM10 was significantly associated with IL-6 and TNF-α in men, but with TNF-α only in women. However, there was no significant statistical interaction between PM10 and sex. For IL-6 and TNF-α, the associations tended to be stronger in younger people, with a significant interaction between PM10 and age groups for IL-6. PM10 was significantly associated with IL-6 and TNF-α in the healthy group and also in the "non-healthy" group, although the statistical interaction between healthy status and PM10 was not significant. Conclusion: In summary, we found significant independent positive associations of short-term exposure to PM10 with circulating levels of IL-6 and TNF-α in the adult population of Lausanne. Our findings strongly support the idea that short-term exposure to PM10 is sufficient to induce systemic inflammation on a broad scale in the general population. From a public health perspective, the reported association of elevated inflammatory cytokines with short-term exposure to PM10 in a city with relatively clean air such as Lausanne supports the importance of limiting urban air pollution levels.
Resumo:
PURPOSE: Low tidal volume ventilation and permissive hypercapnia are required in patients with sepsis complicated by ARDS. The effects of hypercapnia on tissue oxidative metabolism in this setting are unknown. We therefore determined the effects of moderate hypercapnia on markers of systemic and splanchnic oxidative metabolism in an animal model of endotoxemia. METHODS: Anesthetized rats maintained at a PaCO(2) of 30, 40 or 60 mmHg were challenged with endotoxin. A control group (PaCO(2) 40 mmHg) received isotonic saline. Hemodynamic variables, arterial lactate, pyruvate, and ketone bodies were measured at baseline and after 4 h. Tissue adenosine triphosphate (ATP) and lactate were measured in the small intestine and the liver after 4 h. RESULTS: Endotoxin resulted in low cardiac output, increased lactate/pyruvate ratio and decreased ketone body ratio. These changes were not influenced by hypercapnia, but were more severe with hypocapnia. In the liver, ATP decreased and lactate increased independently from PaCO(2) after endotoxin. In contrast, the drop of ATP and the rise in lactate triggered by endotoxin in the intestine were prevented by hypercapnia. CONCLUSIONS: During endotoxemia in rats, moderate hypercapnia prevents the deterioration of tissue energetics in the intestine.
Resumo:
Cocoa is a food relatively rich in polyphenols, which makes it a potent antioxidant. Due to its activity as an antioxidant, as well as through other mechanisms, cocoa consumption has been reported to be beneficial for cardiovascular health, brain functions, and cancer prevention. Furthermore, cocoa influences the immune system, in particular the inflammatory innate response and the systemic and intestinal adaptive immune response. Preclinical studies have demonstrated that a cocoa-enriched diet modifies T-cell functions that conduce to a modulation of the synthesis of systemic and gut antibodies. In this regard, it seems that a cocoa diet in rats produces changes in the lymphocyte composition of secondary lymphoid tissues and the cytokines secreted by T cells. These results suggest that it is possible that cocoa could inhibit the function of Th2 cells, and in line with this, the preventive effect of cocoa on IgE synthesis in a rat allergy model has been reported, which opens up new perspectives when considering the beneficial effects of cocoa compounds. On the other hand, cocoa intake modifies the functionality of gut-associated lymphoid tissue by means of modulating IgA secretion and intestinal microbiota. The mechanisms involved in these influences are discussed here. Further research may elucidate the cocoa compounds involved in such an effect and also the possible medical approaches to these repercussions
Resumo:
The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.
Resumo:
BACKGROUND AND PURPOSE Kyotorphin (KTP; L-Tyr-L-Arg), an endogenous neuropeptide, is potently analgesic when delivered directly to the central nervous system. Its weak analgesic effects after systemic administration have been explained by inability to cross the blood-brain barrier (BBB) and detract from the possible clinical use of KTP as an analgesic. In this study, we aimed to increase the lipophilicity of KTP by amidation and to evaluate the analgesic efficacy of a new KTP derivative (KTP-amide - KTP-NH 2). EXPERIMENTAL APPROACH We synthesized KTP-NH 2. This peptide was given systemically to assess its ability to cross the BBB. A wide range of pain models, including acute, sustained and chronic inflammatory and neuropathic pain, were used to characterize analgesic efficacies of KTP-NH 2. Binding to opioid receptors and toxicity were also measured. KEY RESULTS KTP-NH 2, unlike its precursor KTP, was lipophilic and highly analgesic following systemic administration in several acute and chronic pain models, without inducing toxic effects or affecting motor responses and blood pressure. Binding to opioid receptors was minimal. KTP-NH 2 inhibited nociceptive responses of spinal neurons. Its analgesic effects were prevented by intrathecal or i.p. administration of naloxone. CONCLUSIONS AND IMPLICATIONS Amidation allowed KTP to show good analgesic ability after systemic delivery in acute and chronic pain models. The indirect opioid-mediated actions of KTP-NH 2 may explain why this compound retained its analgesic effects although the usual side effects of opioids were absent, which is a desired feature in next-generation pain medications
Resumo:
Many of the reproductive disorders that emerge in adulthood have their origin during fetal development. Numerous studies have demonstrated that exposure to endocrine disrupting chemicals can permanently affect the reproductive health of experimental animals. In mammals, male sexual differentiation and development are androgen-dependent processes. In rat, the critical programming window for masculinization occurs between embryonic days (EDs) 15.5 and 19.5. Disorders in sex steroid balance during fetal life can disturb the development of the male reproductive tract. In addition to the fetal testis, the adrenal cortex starts to produce steroid hormones before birth. Glucocorticoids produced by the adrenal cortex are essential for preparing the fetus for birth. In the present study, the effects of exposure to endocrine disrupters on fetal male rat testicular and adrenal development were investigated. To differentiate the systemic and direct testicular effects of endocrine disrupters, both in vivo and in vitro experiments were performed. The present study also clarified the role of desert hedgehog signalling (Dhh) in the development of the testis. The results indicate that endocrine disrupters, diethylstilbestrol (DES) and flutamide, are able to induce rapid steroidogenic changes in fetal rat testis under in vitro conditions. Although in utero exposure to these chemicals did not show overt effects in fetal testis, they can induce permanent changes in the developing testis and accessory sex organs later in life. We also reported that exposure to antiandrogens can interfere with testicular Dhh signalling and result in impaired differentiation of the fetal Leydig cells and subsequently lead to abnormal testicular development and sexual differentiation. In utero exposure to tetrachlorodibenzo-p-dioxin (TCDD) caused direct testicular and pituitary effects on the fetal male rat but with different dose responses. In a study in which the effects of developmental exposure to environmental antiandrogens, di-isononylphthalate and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p’-DDE), on fetal male rat steroidogenesis were investigated, chemicals did not down-regulate testicular or adrenal steroid hormone synthesis or production in 19.5-day-old fetal rats. However, p,p’-DDE-treatment caused clear histological and ultrastructural changes in the prenatal testis and adrenal gland. These structural alterations can disturb the development and function of fetal testis and adrenal gland that may become evident later in life. Exposure to endocrine disrupters during fetal life can cause morphological abnormalities and alter steroid hormone production by fetal rat Leydig cells and adrenocortical cells. These changes may contribute to the maldevelopment of the testis and the adrenal gland. The present study highlights the importance of the fetal period as a sensitive window for endocrine disruption.
Resumo:
Systemic blood flow (Q) was measured by echodopplercardiography in 5 normal young adult males during apnea, eupnea and tachypnea. Measurements were made in a recumbent posture at 3-min intervals. Tachypnea was attained by doubling the respiratory frequency at eupnea at a constant tidal volume. An open glottis was maintained during apnea at the resting respiratory level. The Q values were positively correlated with the respiratory frequency, decreasing from eupnea to apnea and increasing from eupnea to tachypnea (P<0.05). These data demonstrate that echodopplercardiography, a better qualified tool for this purpose, confirms the positive and progressive effects of ventilation on systemic blood flow, as suggested by previous studies based on diverse technical approaches
Resumo:
This review describes the ways in which the primary bradycardia and peripheral vasoconstriction evoked by selective stimulation of peripheral chemoreceptors can be modified by the secondary effects of a chemoreceptor-induced increase in ventilation. The evidence that strong stimulation of peripheral chemoreceptors can evoke the behavioural and cardiovascular components of the alerting or defence response which is characteristically evoked by novel or noxious stimuli is considered. The functional significance of all these influences in systemic hypoxia is then discussed with emphasis on the fact that these reflex changes can be overcome by the local effects of hypoxia: central neural hypoxia depresses ventilation, hypoxia acting on the heart causes bradycardia and local hypoxia of skeletal muscle and brain induces vasodilatation. Further, it is proposed that these local influences can become interdependent, so generating a positive feedback loop that may explain sudden infant death syndrome (SIDS). It is also argued that a major contributor to these local influences is adenosine. The role of adenosine in determining the distribution of O2 in skeletal muscle microcirculation in hypoxia is discussed, together with its possible cellular mechanisms of action. Finally, evidence is presented that in chronic systemic hypoxia, the reflex vasoconstrictor influences of the sympathetic nervous system are reduced and/or the local dilator influences of hypoxia are enhanced. In vitro and in vivo findings suggest this is partly explained by upregulation of nitric oxide (NO) synthesis by the vascular endothelium which facilitates vasodilatation induced by adenosine and other NO-dependent dilators and attenuates noradrenaline-evoked vasoconstriction.
Resumo:
Normal aging is accompanied by renal functional and morphological deterioration and dietetic manipulation has been used to delay this age-related decline. We examined the effects of chronic administration of diets containing 5% lipid-enriched diet (LD, w/w) on renal function of rats at different ages. Three types of LD were tested: canola oil, fish oil and butter. Mean systemic tail-cuff blood pressure and glycemia remained within the normal range whatever the age and the diet of the animals. Proteinuria began to rise from the 8th month in the groups ingesting LD, while in the control group it increased significantly (above 10 mg/24 h) only after the 10th month. With age, a significant and progressive decline in glomerular filtration rate (GFR) and renal plasma flow was observed in the LD groups but after 6 months of lipid supplementation, the decline in these parameters was more marked in the butter and fish oil groups. By the 18th month, the lowest GFR level was observed in the group ingesting the butter diet (2.93 ± 0.22 vs 5.01 ± 0.21 ml min-1 kg-1 in control, P<0.05). Net acid excretion, evaluated in 9- and 18-month-old rats, was stimulated in the fish oil group when compared both to control and to the other two LD groups. These results suggest that even low levels of LD in a chronic nutritional regimen can modify the age-related changes in renal function and that the impact of different types of lipid-supplemented diets on renal function depends on the kind of lipid present in the diet.
Resumo:
We investigated the acute effects of centrally acting antihypertensive drugs on the microcirculation of pentobarbital-anesthetized spontaneously hypertensive rats (SHR). The effects of the sympatho-inhibitory agents clonidine and rilmenidine, known to activate both alpha2-adrenoceptors and nonadrenergic I1-imidazoline binding sites (I1BS) in the central nervous system, were compared to those of dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3H -pyrrol-2-yl)-amine hydrochloride (LNP 509), which selectively binds to the I1BS. Terminal mesenteric arterioles were observed by intravital microscopy. Activation of the central sympathetic system with L-glutamate (125 µg, ic) induced marked vasoconstriction of the mesenteric microcirculation (27 ± 3%; N = 6, P < 0.05). In contrast, the marked hypotensive and bradycardic effects elicited by intracisternal injection of clonidine (1 µg), rilmenidine (7 µg) and LNP 509 (60 µg) were accompanied by significant increases in arteriolar diameter (12 ± 1, 25 ± 10 and 21 ± 4%, respectively; N = 6, P < 0.05). The vasodilating effects of rilmenidine and LNP 509 were two-fold higher than those of clonidine, although they induced an identical hypotensive effect. Central sympathetic inhibition elicited by baclofen (1 µg, ic), a GABA B receptor agonist, also resulted in vasodilation of the SHR microvessels. The acute administration of clonidine, rilmenidine and LNP 509 also induced a significant decrease of cardiac output, whereas a decrease in systemic vascular resistance was observed only after rilmenidine and LNP 509. We conclude that the normalization of blood pressure in SHR induced by centrally acting antihypertensive agents is paralleled by important vasodilation of the mesenteric microcirculation. This effect is more pronounced with substances acting preferentially (rilmenidine) or exclusively (LNP 509) upon I1BS than with those presenting important alpha2-adrenergic activity (clonidine).
Resumo:
We investigated the systemic and regional hemodynamic effects of early crystalloid infusion in an experimental model of septic shock induced by intravenous inoculation with live Escherichia coli. Anesthetized dogs received an intravenous infusion of 1.2 x 10(10) cfu/kg live E. coli in 30 min. After 30 min of observation, they were randomized to controls (no fluids; N = 7), or fluid resuscitation with lactated Ringer's solution, 16 ml/kg (N = 7) or 32 ml/kg (N = 7) over 30 min and followed for 120 min. Cardiac index, portal blood flow, mean arterial pressure, systemic and regional oxygen-derived variables, blood lactate, and gastric PCO2 were assessed. Rapid and progressive cardiovascular deterioration with reduction in cardiac output, mean arterial pressure and portal blood flow (~50, ~25 and ~70%, respectively) was induced by the live bacteria challenge. Systemic and regional territories showed significant increases in oxygen extraction and in lactate levels. Significant increases in venous-arterial (~9.6 mmHg), portal-arterial (~12.1 mmHg) and gastric mucosal-arterial (~18.4 mmHg) PCO2 gradients were also observed. Early fluid replacement, especially with 32 ml/kg volumes of crystalloids, promoted only partial and transient benefits such as increases of ~76% in cardiac index, of ~50% in portal vein blood flow and decreases in venous-arterial, portal-arterial, gastric mucosal-arterial PCO2 gradients (7.2 ± 1.0, 7.2 ± 1.3 and 9.7 ± 2.5 mmHg, respectively). The fluid infusion promoted only modest and transient benefits, unable to restore the systemic and regional perfusional and metabolic changes in this hypodynamic septic shock model.