937 resultados para superheavy elements
Resumo:
The rapid recent increase in microarray-based gene expression studies in the corpus luteum (CL) utilizing macaque models gathered increasing volume of data in publically accessible microarray expression databases. Examining gene pathways in different functional states of CL may help to understand the factors that control luteal function and hence human fertility. Co-regulation of genes in microarray experiments may imply common transcriptional regulation by sequence-specific DNA-binding transcriptional factors. We have computationally analyzed the transcription factor binding sites (TFBS) in a previously reported macaque luteal microarray gene set (n = 15) that are common targets of luteotropin (luteinizing hormone (LH) and human chorionic gonadotropin (hCG)) and luteolysin (prostaglandin (PG) F-2 alpha). This in silico approach can reveal transcriptional networks that control these important genes which are representative of the interplay between luteotropic and luteolytic factors in the control of luteal function. Our computational analyses revealed 6 matrix families whose binding sites are significantly over-represented in promoters of these genes. The roles of these factors are discussed, which might help to understand the transcriptional regulatory network in the control of luteal function. These factors might be promising experimental targets for investigation of human luteal insufficiency. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A rigorous lower bound solution, with the usage of the finite elements limit analysis, has been obtained for finding the ultimate bearing capacity of two interfering strip footings placed on a sandy medium. Smooth as well as rough footingsoil interfaces are considered in the analysis. The failure load for an interfering footing becomes always greater than that for a single isolated footing. The effect of the interference on the failure load (i) for rough footings becomes greater than that for smooth footings, (ii) increases with an increase in phi, and (iii) becomes almost negligible beyond S/B>3. Compared with various theoretical and experimental results reported in literature, the present analysis generally provides the lowest magnitude of the collapse load. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
Psoralea corylifolia (PC), a medicinal plant, is used in traditional medicine to treat diabetes. Purpose of the research was to examine the antidiabetic and antilipemic potential of PC and to determine the relationship between its antidiabetic potential and the trace elements present. Wistar rats (150-200 g) with fasting blood glucose (FBG) of 80-110 mg dl(-1)(sub-diabetic) and 150-200 mg dl(-1)(mild diabetic) were selected for the short term antidiabetic studies and severely diabetic rats (FBG > 300 mg dl(-1)) were chosen for the long term antidiabetic and hypolipemic studies of PC seed extract. Laser induced breakdown spectroscopy (LIBS) was used to detect trace elements in the PC extract and the intensity ratios of trace elements were estimated. The dose of 250 mg kg(-1) of PC extract was found to be the most effective in lowering blood glucose level (BGL) of normal, sub, mild and severely diabetic rats during FBG and glucose tolerance test (GTT) studies. Lipid profile studies on severely diabetic rats showed substantial reduction in total cholesterol, triglycerides, very low density lipoprotein, and low density lipoprotein and an increase in the total protein, body weight, high density lipoprotein, and hemoglobin after 28 days of treatment. Significant reduction in urine sugar and protein levels was also observed. LIBS analysis of the PC extract revealed the presence of Mg, Si, Na, K, Ca, Zn and Cl. The study validates the traditional use of PC in the treatment of diabetes and confirms its antilipemic potential. The antidiabetic activity of PC extract may partly be due to the presence of appreciable amounts of insulin potentiating elements like Mg, Ca, and K.
Resumo:
The potential merit of laser-induced breakdown spectroscopy (LIBS) has been demonstrated for detection and quantification of trace pollutants trapped in snow/ice samples. In this technique, a high-power pulsed laser beam from Nd:YAG Laser (Model no. Surelite III-10, Continuum, Santa Clara, CA, USA) is focused on the surface of the target to generate plasma. The characteristic emissions from laser-generated plasma are collected and recorded by a fiber-coupled LIBS 2000+ (Ocean Optics, Santa Clara, CA, USA) spectrometer. The fingerprint of the constituents present in the sample is obtained by analyzing the spectral lines by using OOI LIBS software. Reliable detection of several elements like Zn, Al, Mg, Fe, Ca, C, N, H, and O in snow/ice samples collected from different locations (elevation) of Manali and several snow samples collected from the Greater Himalayan region (from a cold lab in Manali, India) in different months has been demonstrated. The calibration curve approach has been adopted for the quantitative analysis of these elements like Zn, Al, Fe, and Mg. Our results clearly demonstrate that the level of contamination is higher in those samples that were collected in the month of January in comparison to those collected in February and March.
Resumo:
The accuracy of pairing of the anticodon of the initiator tRNA (tRNA(fMet)) and the initiation codon of an mRNA, in the ribosomal P-site, is crucial for determining the translational reading frame. However, a direct role of any ribosomal element(s) in scrutinizing this pairing is unknown. The P-site elements, m(2)G966 (methylated by RsmD), m(5)C967 (methylated by RsmB) and the C-terminal tail of the protein S9 lie in the vicinity of tRNA(fMet). We investigated the role of these elements in initiation from various codons, namely, AUG, GUG, UUG, CUG, AUA, AUU, AUC and ACG with tRNA(CAU)(fmet) (tRNA(fMet) with CAU anticodon); CAC and CAU with tRNA(GUG)(fme); UAG with tRNA(GAU)(fMet) using in vivo and computational methods. Although RsmB deficiency did not impact initiation from most codons, RsmD deficiency increased initiation from AUA, CAC and CAU (2- to 3.6-fold). Deletion of the S9 C-terminal tail resulted in poorer initiation from UUG, GUG and CUG, but in increased initiation from CAC, CAU and UAC codons (up to 4-fold). Also, the S9 tail suppressed initiation with tRNA(CAU)(fMet)lacking the 3GC base pairs in the anticodon stem. These observations suggest distinctive roles of 966/967 methylations and the S9 tail in initiation.
Resumo:
The ribosomal P-site hosts the peptidyl-tRNAs during translation elongation. Which P-site elements support these tRNA species to maintain codon-anticodon interactions has remained unclear. We investigated the effects of P-site features of methylations of G966, C967, and the conserved C-terminal tail sequence of Ser, Lys, and Arg (SKR) of the S9 ribosomal protein in maintenance of the translational reading frame of an mRNA. We generated Escherichia coli strains deleted for the SKR sequence in S9 ribosomal protein, RsmB (which methylates C967), and RsmD (which methylates G966) and used them to translate LacZ from its +1 and -1 out-of-frame constructs. We show that the S9 SKR tail prevents both the +1 and -1 frameshifts and plays a general role in holding the P-site tRNA/peptidyl-tRNA in place. In contrast, the G966 and C967 methylations did not make a direct contribution to the maintenance of the translational frame of an mRNA. However, deletion of rsmB in the S9 Delta 3 background caused significantly increased -1 frameshifting at 37 degrees C. Interestingly, the effects of the deficiency of C967 methylation were annulled when the E. coli strain was grown at 30 degrees C, supporting its context-dependent role.
Resumo:
A wave propagation based approach for the detection of damage in components of structures having periodic damage has been proposed. Periodic damage pattern may arise in a structure due to periodicity in geometry and in loading. The method exploits the Block-Floquet band formation mechanism, a feature specific to structures with periodicity, to identify propagation bands (pass bands) and attenuation bands (stop bands) at different frequency ranges. The presence of damage modifies the wave propagation behaviour forming these bands. With proper positioning of sensors a damage force indicator (DFI) method can be used to locate the defect at an accuracy level of sensor to sensor distance. A wide range of transducer frequency may be used to obtain further information about the shape and size of the damage. The methodology is demonstrated using a few 1-D structures with different kinds of periodicity and damage. For this purpose, dynamic stiffness matrix is formed for the periodic elements to obtain the dispersion relationship using frequency domain spectral element and spectral super element method. The sensitivity of the damage force indicator for different types of periodic damages is also analysed.
Resumo:
Three codes, that can solve three dimensional linear elastostatic problems using constant boundary elements while ignoring body forces, are provided here. The file 'bemconst.m' contains a MATLAB code for solving three dimensional linear elastostatic problems using constant boundary elements while ignoring body forces. The file 'bemconst.f90' is a Fortran translation of the MATLAB code contained in the file 'bemconst.m'. The file 'bemconstp.f90' is a parallelized version of the Fortran code contained in the file 'bemconst.f90'. The file 'inbem96.txt' is the input file for the Fortran codes contained in the files 'bemconst.f90' and 'bemconstp.f90'. Author hereby declares that the present codes are the original works of the author. Further, author hereby declares that any of the present codes, in full or in part, is not a translation or a copy of any of the existing codes written by someone else. Author's institution (Indian Institute of Science) has informed the author in writing that the institution is not interested in claiming any copyright on the present codes. Author is hereby distributing the present codes under the MIT License; full text of the license is included in each of the files that contain the codes.
Resumo:
The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
Resumo:
A numerical formulation has been proposed for solving an axisymmetric stability problem in geomechanics with upper bound limit analysis, finite elements, and linear optimization. The Drucker-Prager yield criterion is linearized by simulating a sphere with a circumscribed truncated icosahedron. The analysis considers only the velocities and plastic multiplier rates, not the stresses, as the basic unknowns. The formulation is simple to implement, and it has been employed for finding the collapse loads of a circular footing placed over the surface of a cohesive-frictional material. The formulation can be used to solve any general axisymmetric geomechanics stability problem.
Resumo:
Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.
Resumo:
Chemical doping of graphene becomes necessary to create a band gap which is useful for various applications. Furthermore, chemical doping of elements like boron and nitrogen in graphene gives rise to useful properties. Since chemically doped graphene is both of academic and technical importance, we have prepared this article on the present status of various aspects of this important class of materials. In doing so, we have covered the recent literature on this subject citing all the major references. Some of the aspects that we have covered are the synthesis of chemically doped graphene followed by properties and applications. The applications discussed relate to gas adsorption, lithium batteries, supercapacitors, oxygen reduction reaction, field emission and photochemical water splitting. Characterization of chemically doped graphene also included. We believe that the article will be useful to all those interested in graphene and related materials and provides the present status of the subject. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Composite laminates are prone to delamination. Implementation of delamination in the Carrera Unified Formulation frame work using nine noded quadrilateral MITC9 element is discussed in this article. MITC9 element is devoid of shear locking and membrane locking. Delaminated as well as healthy structure is analyzed for free mode vibration. The results from the present work are compared with the available experimental or/and research article or/and the three dimensional finite element simulations. The effect of different kinds and different percentages of area of delamination on the first three natural frequencies of the structure is discussed. The presence of open-mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of places between the second bending mode, with that of the first torsional mode frequency is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layerwise theories as compared to equivalent single layer theories for very large delaminations is stated. The effect of different kinds of delamination and their effect on the second bending and first torsional mode shape is discussed. (C) 2014 Elsevier Ltd. All rights reserved.