966 resultados para sunflower oils


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve essential oils from Mediterranean aromatic plants were tested for their phytotoxic activity, at different doses, against the germination and the initial radicle growth of seeds of Raphanus sativus, Lactuca sativa and Lepidium sativum. The essential oils were obtained from Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa officinalis, Ocimum basilicum, Origanum vulgare, Salvia officinalis and Thymus vulgaris (Lamiaceae), Verbena officinalis (Verbenaceae), Pimpinella anisum, Foeniculum vulgare and Carum carvi (Apiaceae). The germination and radicle growth of tested seeds were affected in different ways by the oils. Thyme, balm, vervain and caraway essential oils were more active against both germination and radicle elongation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of essential oils in foods has attracted great interest, due to their antagonistic action against pathogenic microorganisms. However, this action is undesirable for probiotic foods, as products containing Lactobacillus rhamnosus. The aim of the present study was to measure the sensitivity profile of L. rhamnosus and a yogurt starter culture in fermented milk, upon addition of increasing concentrations of cinnamon, clove and mint essential oils. Essential oils were prepared by steam distillation, and chemically characterised by gas chromatography-mass spectrometry (GC-MS) and determination of density. Survival curves were obtained from counts of L. rhamnosus and the starter culture (alone and in combination), upon addition of 0.04% essential oils. In parallel, titratable acidity was monitored over 28 experimental days. Minimum inhibitory concentration values, obtained using the microdilution method in Brain Heart Infusion medium, were 0.025, 0.2 and 0.4% for cinnamon, clove and mint essential oils, respectively. Cinnamon essential oil had the highest antimicrobial activity, especially against the starter culture, interfering with lactic acid production. Although viable cell counts of L. rhamnosus were lower following treatment with all 3 essential oils, relative to controls, these results were not statistically significant; in addition, cell counts remained greater than the minimum count of 10(8)CFU/mL required for a product to be considered a probiotic. Thus, although use of cinnamon essential oil in yogurt makes starter culture fermentation unfeasible, it does not prevent the application of L. rhamnosus to probiotic fermented milk. Furthermore, clove and mint essential oil caused sublethal stress to L. rhamnosus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to establish a phytochemical analysis of the crude extracts and performed GC-MS of the essential oils (EOs) of Eugenia uniflora L. (Myrtaceae) and Asteraceae species Baccharis dracunculifolia DC, Matricaria chamomilla L. and Vernonia polyanthes Less, as well as determining their antimicrobial activity. Establishment of the minimal inhibitory concentrations of the crude extracts and EOs against 16 Staphylococcus aureus and 16 Escherichia coli strains from human specimens was carried out using the dilution method in Mueller-Hinton agar. Some phenolic compounds with antimicrobial properties were established, and all EOs had a higher antimicrobial activity than the extracts. Matricaria chamomilla extract and E. uniflora EO were efficient against S. aureus strains, while E. uniflora and V. polyanthes extracts and V. polyanthes EO showed the best antimicrobial activity against E. coli strains. Staphylococcus aureus strains were more susceptible to the tested plant products than E. coli, but all natural products promoted antimicrobial growth inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthelmintic resistance is a worldwide concern in small ruminant industry and new plant-derived compounds are being studied for their potential use against gastrointestinal nematodes. Mentha piperita, Cymbopogon martinii and Cymbopogon schoenanthus essential oils were evaluated against developmental stages of trichostrongylids from sheep naturally infected (95% Haemonchus contortus and 5% Trichostrogylus spp.) through the egg hatch assay (EHA), larval development assay (LDA), larval feeding inhibition assay (LFIA), and the larval exsheathment assay (LEA). The major constituent of the essential oils, quantified by gas chromatography for M. piperita oil was menthol (42.5%), while for C. martinii and C. schoenanthus the main component was geraniol (81.4% and 62.5%, respectively). In all in vitro tests C. schoenanthus essential oil had the best activity against ovine trichostrongylids followed by C. martini, while M. piperita presented the least activity. Cymbopogon schoenanthus essential oil had LC(50) value of 0.045 mg/ml in EHA, 0.063 mg/ml in LDA, 0.009 mg/ml in LFIA, and 24.66 mg/ml in LEA. The anthelmintic activity of essential oils followed the same pattern in all in vitro tests, suggesting C. schoenanthus essential oil could be an interesting candidate for nematode control, although in vivo studies are necessary to validate the anthelmintic properties of this oil. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. on the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous tests with essential oils from ripe chiropterochoric fruits suggested they can be used to attract and capture fruit-eating bats inside forest remnants. Here we evaluated the efficiency of these oils to attract frugivorous bats to open areas. We performed field tests with artificial fruits impregnated with essential oils of the genera Piper or Ficus that were attached to two groups of mist-nets set 50 m outside the border of a forest remnant. One group of artificial fruits received the corresponding oil isolated through hydrodistillation and the other received water only. Fruits with oils attracted significantly more fruit-eating bats, especially Artibeus lituratus that regularly crosses open habitats to reach other forest remnants. The highly significant attraction of A. lituratus by the oil of Piper was unexpected, since this bat is a specialist on Ficus fruits. We hypothesize that in habitats with no fruit available it is possible to attract frugivorous bats with the odor of several ripe fruit species. Furthermore, we verified that almost half of the individuals captured defecated seeds, indicating that the oils also attract recently fed bats, even when their preferred food is available nearby. This technique potentially may increase seed rain at specific locations, being particularly promising to restoration projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avaliação da Biodegradação de Diferentes Tipos de Óleo Lubrificante em Meio Aquoso pela Norma Técnica L6.350 (CETESB, 1990), utiliza-se o processo respirométrico de Bartha e Pramer para acompanhar a biodegradação de diferentes tipos de óleo lubrificante automotivo adaptado ao meio aquoso. Para realização do experimento foram preparados um inóculo base e, posteriormente, um inóculo aquoso. Quatro tratamentos foram realizados em dois experimentos consecutivos: T1 (controle); T2 (óleo semi-sintético); T3 (óleo mineral); T4 (óleo usado). Dentre os resultados, obteve-se a seguinte ordem decrescente na produção de CO2 nos respirômetros: T4 > T2 > T3 > T1. Assim, o óleo lubrificante usado surgiu com maior biodegradabilidade, seguido do semisintético e do óleo mineral. Observou-se também que o lubrificante mineral apresentou maior período de adaptação comparado ao semisintético.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)