908 resultados para strip aquifers
Resumo:
This review reflects the state of the art in study of contact and dynamic phenomena occurring in cold roll forming. The importance of taking these phenomena into account is determined by significant machine time and tooling costs spent on worn out forming rolls replacement and equipment adjustment in cold roll forming. Predictive modelling of the tool wear caused by contact and dynamic phenomena can reduce the production losses in this technological process.
Resumo:
This paper presents a theoretical model of flow and chemical transport processes in subterranean estuaries (unconfined brackish groundwater aquifers at the ocean-land interface). The model shows that groundwater circulation and oscillating flow, caused by wave setup and tide, may constitute up to 96% of submarine groundwater discharge (SGWD) compared with 4% due to the net groundwater discharge. While these local flow processes do not change the total amount of land-derived chemical input to the ocean over a long period (e.g., yearly), they induce fluctuations of the chemical transfer rate as the aquifer undergoes saltwater intrusion. This may result in a substantial increase in chemical fluxes to the ocean over a short period (e.g., monthly and by a factor of 20 above the averaged level), imposing a possible threat to the marine environment. These results are essentially consistent with the experimental findings of Moore [1996] and have important implications for coastal resources management.
Resumo:
Several macrocyclic peptides (similar to 30 amino acids), with diverse biological activities, have been isolated from the Rubiaceae and Violaceae plant families over recent years. We have significantly expanded the range of known macrocyclic peptides with the discovery of 16 novel peptides from extracts of Viola hederaceae, Viola odorata and Oldenlandia affinis. The Viola plants had not previously been examined for these peptides and thus represent novel species in which these unusual macrocyclic peptides are produced. Further, we have determined the three-dimensional struc ture of one of these novel peptides, cycloviolacin O1, using H-1 NMR spectroscopy. The structure consists of a distorted triple-stranded beta-sheet and a cystine-knot arrangement of the disulfide bonds. This structure is similar to kalata B1 and circulin A, the only two macrocyclic peptides for which a structure was available, suggesting that despite the sequence variation throughout the peptides they form a family in which the overall fold is conserved. We refer to these peptides as the cyclotide family and their embedded topology as the cyclic cystine knot (CCK) motif. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals they can be separated into two subfamilies, one of which tends to contain a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-Pro peptide bond and may conceptually be regarded as a molecular Moebius strip. Here we define the structural features of the two apparent subfamilies of the CCK peptides which may be significant for the likely defense related role of these peptides within plants. (C) 1999 Academic Press.
Resumo:
Groundwater waves, that is, water table fluctuations, are a natural phenomenon in coastal aquifers. They represent an important part of the interaction between the ocean and aquifer and affect the mass exchange between them. This paper presents a new groundwater wave equation. Because it includes the effects of vertical flows and capillarity, the new equation is applicable to both intermediate-depth aquifers and high-frequency waves. Compared with the wave equation derived by Nielsen ed al. [1997], the present equation provides a closer representation of groundwater waves. In particular, it predicts high-frequency water table fluctuations as observed in the field. A validation of the new equation has been carried out by comparing the analytical solutions to it with predictions from direct simulations using the numerical model SUTRA. The effects of various physical parameters and their relative importance are also discussed.
Resumo:
Tidal water table fluctuations in a coastal aquifer are driven by tides on a moving boundary that varies with the beach slope. One-dimensional models based on the Boussinesq equation are often used to analyse tidal signals in coastal aquifers. The moving boundary condition hinders analytical solutions to even the linearised Boussinesq equation. This paper presents a new perturbation approach to the problem that maintains the simplicity of the linearised one-dimensional Boussinesq model. Our method involves transforming the Boussinesq equation to an ADE (advection-diffusion equation) with an oscillating velocity. The perturbation method is applied to the propagation of spring-neap tides (a bichromatic tidal system with the fundamental frequencies wt and wt) in the aquifer. The results demonstrate analytically, for the first time, that the moving boundary induces interactions between the two primary tidal oscillations, generating a slowly damped water table fluctuation of frequency omega(1) - omega(2), i.e., the spring-neap tidal water table fluctuation. The analytical predictions are found to be consistent with recently published field observations. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary's entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429-35) for two-dimensional non-interacting tidal waves. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The presumptive tonic muscles fibres of Cottoperca gobio, Champsocephalus esox, Harpagifer bispinis, Eleginops maclovinus, Patagonothen tessellata, P. cornucola and Paranotothenia magellanica stained weakly or were unstained for glycogen, lipid, succinic dehydrogenase (SDHase) and myosin ATPase (mATPase) activity. Slow, intermediate and fast twitch muscle fibres, distinguished on the basis of the pH stability of their mATPases, showed intense, moderate and low staining activity for SDHase, respectively. Slow fibres were the major component of the pectoral fin adductor profundis muscle. The proportion of different muscle fibre types varied from the proximal to distal end of the muscle, but showed relatively little variation between species. The myotomes contained a lateral superficial strip of red muscle composed of presumptive tonic, slow twitch and intermediate fibres, thickening to a major wedge at the horizontal septum. All species also had characteristic secondary dorsal and ventral wedges of red muscle. The relative abundance and localization of muscle fibre types in the red muscle varied between species and with body size in the protandric hermaphrodite E. maclovinus. The frequency distribution of diameters for fast twitch muscle fibres, the major component of deep white muscle, was determined in fish of a range of body sizes. The absence of fibres <20 mu m diameter was used as a criterion for the cessation of muscle fibre recruitment. Fibre recruitment had stopped in P, tessellata of 13.8 cm L-T and E, maclovinus of 32.8 cm L-T, equivalent to 49 and 36.5% of their recorded maximum sizes respectively. As a result in 20-cm P. tessellata, the maximum fibre diameter was 300 mu m and 36% of fibres were in excess of 200 mu m The unusually large maximum fibre diameter, the general arrangement of the red muscle layer and the extreme pH lability of the mATPase of fast twitch fibres are all common characters of the sub-Antarctic and Antarctic Notothenioids, including Cottoperca gobio, the suggested sister group to the Notothenidae. (C) 2000 The Fisheries Society of the British Isles.
Resumo:
An analytical solution is derived for tidal fluctuations in a coupled coastal aquifer system consisting of a semi-confined aquifer, a thin semi-permeable layer and a phreatic aquifer. Based on the solution, we study the interactions (via leakage) between the confined and unconfined aquifers in response to tides. The results show that, under certain conditions, leakage from the confined aquifer can affect considerably the tidal water table fluctuation in the phreatic aquifer and vice versa. Ignoring these effects could lead to errors in estimating aquifer properties based on tidal signals. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Predictions of water table fluctuations in coastal aquifers are needed for numerous coastal and water resources engineering problems. Most previous investigations have been based on the Boussinesq equation for the case of a vertical beach. In this note an analytical solution based on shallow water expansion for the spring- neap tide- induced water table fluctuations in a coastal aquifer is presented. Unlike most previous investigations, multitidal signals are considered with a sloping coastal aquifer. The new solution is verified by comparing with field observations from Ardeer, Scotland. On the basis of the analytical approximation the influences of higher- order components on water table elevation are examined first. Then, a parametric study has been performed to investigate the effects of the amplitude ratio (lambda), frequency ratio (omega), and phases (delta(1) and delta(2)) on the tide- induced water table fluctuations in a sloping sandy beach.
Resumo:
The tidal influence on groundwater hydrodynamics, salt-water intrusion and submarine groundwater discharge from coastal/estuarine aquifers is poorly quantified for systems with a mildly sloping beach, in contrast to the case where a vertical beach face is assumed. We investigated the effect of beach slope for a coastal aquifer adjacent to a low-relief estuary, where industrial waste was emplaced over the aquifer. The waste was suspected to discharge leachate towards the estuary. Field observations at various locations showed that tidally induced groundwater head fluctuations were skewed temporally. Frequency analysis suggested that the fluctuation amplitudes decreased exponentially and the phase-tags increased Linearly for the primary tidal signals as they propagated inland. Salinisation zones were observed in the bottom part of the estuary and near the beach surface. Flow and transport processes in a cross-section perpendicular to the estuary were simulated using SEAWAT-2000, which is capable of depicting density-dependent flow and multi-species transport. The simulations showed that the modelled water table fluctuations were in good agreement with the monitored data. Further simulations were conducted to gain insight into the effects of beach slope. In particular the limiting case of a vertical beach face was considered. The simulations showed that density difference and tidal forcing drive a more complex hydrodynamic pattern for the mildly sloping beach than the vertical beach, as well as a profound asymmetry in tidally induced water table fluctuations and enhanced salt-water intrusion. The simulation results also indicated that contaminant transport from the aquifer to the estuary was affected by the tide, where for the mildly sloping beach, the tide tended to intensify the vertical mass exchange in the vicinity of the shorelines, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Objectives: Perifascial areolar tissue (PAT) consists of loose areolar tissue with viscoelastic properties that are similar to those found in tissues in the superficial layer of the vocal fold. The aim of this study was to quantify the inflammatory process and the collagen content of the graft, as well as that of the host tissue, after placement of a strip of PAT into the rabbit vocal fold. Methods: Surgeries were performed on 30 rabbits. The grafts were implanted in pockets that were surgically created in the right vocal fold. The left vocal fold (control group) was subjected only to surgical manipulation. The animals were divided into 3 groups for evaluations at 15 days, 3 months, and 6 months, and their larynx tissues were subsequently reviewed by histology. Results: The grafts were characterized by disorganized and thick collagen bundles and were identified in all study groups. The collagen density stayed constant over time. There was an acute inflammatory response induced by the graft at 15 clays that did not exist in the specimens taken at 3 and 6 months. Deposition of collagen fibers in the lamina propria was observed starting at 15 days after the operation and was more intense in the experimental vocal fold than in the control vocal fold. Conclusions: Our findings indicated that PAT has a low tendency for promoting an inflammatory response. However, there was a loss of the original architecture of the graft tissue and a greater deposition of collagen in the implanted vocal folds than in the control group.
Resumo:
The impact of genetic factors on asthma is well recognized but poorly understood. We tested the hypothesis that different mouse strains present different lung tissue strip mechanics in a model of chronic allergic asthma and that these mechanical differences may be potentially related to changes of extracellular matrix composition and/or contractile elements in lung parenchyma. Oscillatory mechanics were analysed before and after acetylcholine (ACh) in C57BL/10, BALB/c, and A/J mice, subjected or not to ovalbumin sensitization and challenge. In controls, tissue elastance (E) and resistance (R), collagen and elastic fibres` content, and alpha-actin were higher in A/J compared to BALB/c mice, which, in turn, were more elevated than in C57BL/10. A similar response pattern was observed in ovalbumin-challenged animals irrespective of mouse strain. E and R augmented more in ovalbumin-challenged A/J [E: 22%, R: 18%] than C57BL/10 mice [E: 9.4%, R: 11 %] after ACh In conclusion, lung parenchyma remodelled differently yielding distinct in vitro mechanics according to mouse strain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Oral tolerance attenuates changes in in vitro lung tissue mechanics and extracellular matrix remodeling induced by chronic allergic inflammation in guinea pigs. J Appl Physiol 104: 1778-1785, 2008. First published April 3, 2008; doi:10.1152/japplphysiol.00830.2007.-Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.
Resumo:
The absence of an eyebrow, either partial or total, has been observed in patients with craniofacial clefts, such as the Tessier 9 to 13 cleft. Several techniques have been used to improve the appearance of the region, such as island scalp flaps and scalp strip grafting, with limited or marginally satisfactory aesthetic results. The authors report 2 patients with craniofacial clefts in whom a novel technique combining 2 separate surgical approaches, micrografting and tattooing, was used. The use of micrografting with single or double hair units, properly angulated, produces natural-looking and satisfactory results with a minimum of morbidity. Excellent volume and appearance of the eyebrow may be achieved in a single session using this technique. Tattooing performed subsequently over the microimplanted hairs provides the illusion of greater density to the eyebrow, resulting in an appearance closer to normal.
Resumo:
A scheme is presented to incorporate a mixed potential integral equation (MPIE) using Michalski's formulation C with the method of moments (MoM) for analyzing the scattering of a plane wave from conducting planar objects buried in a dielectric half-space. The robust complex image method with a two-level approximation is used for the calculation of the Green's functions for the half-space. To further speed up the computation, an interpolation technique for filling the matrix is employed. While the induced current distributions on the object's surface are obtained in the frequency domain, the corresponding time domain responses are calculated via the inverse fast Fourier transform (FFT), The complex natural resonances of targets are then extracted from the late time response using the generalized pencil-of-function (GPOF) method. We investigate the pole trajectories as we vary the distance between strips and the depth and orientation of single, buried strips, The variation from the pole position of a single strip in a homogeneous dielectric medium was only a few percent for most of these parameter variations.