946 resultados para stranded cable damping
Resumo:
DNA fragments with stretches of cytosine residues can fold into four-stranded structures in which two parallel duplexes, held together by hemiprotonated cytosine.cytosine+ (C.C+) base pairs, intercalate into each other with opposite polarity. The structural details of this intercalated DNA quadruplex have been assessed by solution NMR and single crystal x-ray diffraction studies of cytosine-rich sequences, including those present in metazoan telomeres. A conserved feature of these structures is the absence of stabilizing stacking interactions between the aromatic ring systems of adjacent C.C+ base pairs from intercalated duplexes. Effective stacking involves only the exocyclic keto groups and amino groups of the cytidine bases. The apparent absence of stability provided by stacking interactions between the bases in this intercalated DNA has prompted us to examine the available structures in detail, in particular with regard to unusual features that could compensate for the lack of base stacking. In addition to base-on-deoxyribose stacking and intra-cytidine C-H...O hydrogen bonds, this analysis reveals the presence of a hitherto unobserved, systematic intermolecular C-H...O hydrogen bonding network between the deoxyribose sugar moieties of antiparallel backbones in the four-stranded molecule.
Resumo:
Tumor necrosis factor alpha (TNF-alpha) is well-characterized for its necrotic action against tumor cells; however, it has been increasingly associated with an apoptosis-inducing potential on target cells. While the signaling events and the actual cytolytic mechanism(s) for both TNF-alpha-induced necrosis and apoptosis remain to be fully elucidated, we report here on (i) the ability of TNF-alpha to induce apoptosis in the promonocytic U937 cells, (ii) the discovery of a cross-talk between the TNF-alpha and the interferon signaling pathways, and (iii) the pivotal role of interferon-inducible, double-stranded RNA-activated protein kinase (PKR) in the induction of apoptosis by TNF-alpha. Our data from microscopy studies, trypan blue exclusion staining, and apoptotic DNA ladder electrophoresis revealed that a subclone derived from U937 and carrying a PKR antisense expression vector was resistant to TNF-alpha-induced apoptosis. Further, TNF-alpha initiated a generalized RNA degradation process in which the participation of PKR was required. Finally, the PKR gene is a candidate "death gene" since overexpression of this gene could bring about apoptosis in U937 cells.
Resumo:
The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.
Resumo:
We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines.
Resumo:
To examine the coupling of ATP hydrolysis to helicase translocation along DNA, we have purified and characterized complexes of the Escherichia coli Rep protein, a dimeric DNA helicase, covalently crosslinked to a single-stranded hexadecameric oligodeoxynucleotide (S). Crosslinked Rep monomers (PS) as well as singly ligated (P2S) and doubly ligated (P2S2) Rep dimers were characterized. The equilibrium and kinetic constants for Rep dimerization as well as the steady-state ATPase activities of both PS and P2S crosslinked complexes were identical to the values determined for un-crosslinked Rep complexes formed with dT16. Therefore, ATP hydrolysis by both PS and P2S complexes are not coupled to DNA dissociation. This also rules out a strictly unidirectional sliding mechanism for ATP-driven translocation along single-stranded DNA by either PS or the P2S dimer. However, ATP hydrolysis by the doubly ligated P2S2 Rep dimer is coupled to single-stranded DNA dissociation from one subunit of the dimer, although loosely (low efficiency). These results suggest that ATP hydrolysis can drive translocation of the dimeric Rep helicase along DNA by a "rolling" mechanism where the two DNA binding sites of the dimer alternately bind and release DNA. Such a mechanism is biologically important when one subunit binds duplex DNA, followed by subsequent unwinding.
Resumo:
Sequence specific regulators of eukaryotic gene expression, axiomatically, act through double stranded DNA targets. Proteins that recognize DNA cis-elements as single strands but for which compelling evidence has been lacking to indicate in vivo involvement in transcription are orphaned in this scheme. We sought to determine whether sequence specific single strand binding proteins can find their cognate elements and modify transcription in vivo by studying heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds the single stranded sequence (CCCTCCCCA; CT-element) of the human c-myc gene in vitro. To monitor its DNA binding in vivo, the ability of hnRNP K to activate a reporter gene was amplified by fusion with the VP16 transactivation domain. This chimeric protein was found to transactivate circular but not linear CT-element driven reporters, suggesting that hnRNP K recognizes a single strand region generated by negative supercoiling in circular plasmid. When CT-elements were engineered to overlap with lexA operators, addition of lexA protein, either in vivo or in vitro, abrogated hnRNP K binding most likely by preventing single strand formation. These results not only reveal hnRNP K to be a single strand DNA binding protein in vivo, but demonstrate how a segment of DNA may modify the transcriptional activity of an adjacent gene through the interconversion of duplex and single strands.
Resumo:
A minor groove binder (MGB) derivative (N-3-carbamoyl-1,2-dihydro-3H-pyrrolo[3,2-e]indole-7-carboxylate tripeptide; CDPI3) was covalently linked to the 5' or 3' end of several oligodeoxyribonucleotides (ODNs) totally complementary or possessing a single mismatch to M13mp19 single-stranded DNA. Absorption thermal denaturation and slot-blot hybridization studies showed that conjugation of CDPI3 to these ODNs increased both the specificity and the strength with which they hybridized. Primer extension of the same phage DNA by a modified form of phage T7 DNA polymerase (Sequenase) was physically blocked when a complementary 16-mer with a conjugated 5'-CDPI3 moiety was hybridized to a downstream site. Approximately 50% of the replicating complexes were arrested when the blocking ODN was equimolar to the phage DNA. Inhibition was unaffected by 3'-capping of the ODN with a hexanol group or by elimination of a preannealing step. Blockage was abolished when a single mismatch was introduced into the ODN or when the MGB was either removed or replaced by a 5'-acridine group. A 16-mer with a 3'-CDPI3 moiety failed to arrest primer extension, as did an unmodified 32-mer. We attribute the exceptional stability of hybrids formed by ODNs conjugated to a CDPI3 to the tethered tripeptide binding in the minor groove of the hybrid. When that group is linked to the 5' end of a hybridized ODN, it probably blocks DNA synthesis by inhibiting strand displacement. These ODNs conjugated to CDPI3 offer attractive features as diagnostic probes and antigene agents.
Resumo:
Glycosylation-inhibiting factor (GIF) is a cytokine that is involved in the regulation of IgE synthesis. The crystal structure of recombinant human GIF was determined by the multiple isomorphous replacement method. The structure was refined to an R factor of 0.168 at 1.9 angstrom resolution. The overall structure is seen to consist of three interconnected subunits forming a barrel with three 6-stranded beta-sheets on the inside and six alpha-helices on the outside. There is a 5-angstrom-diameter "hole" through the middle of the barrel. The barrel structure of GIF in part resembles other "trefoil" cytokines such as interleukin 1 and fibroblast growth factor. Each subunit has a new class of alpha + beta sandwich structure consisting of two beta-alpha-beta motifs. These beta-alpha-beta motifs are related by a pseudo-twofold axis and resemble both interleukin 8 and the peptide binding domain of major histocompatibility complex protein, although the topology of the polypeptide chain is quite different.
Resumo:
Agrobacterium genetically transforms plant cells by transferring a single-stranded DNA (ssDNA) copy of the transferred DNA (T-DNA) element, the T-strand, in a complex with Agrobacterium proteins VirD2, bound to the 5' end, and VirE2. VirE2 binds single-stranded nucleic acid cooperatively, fully coating the T-strand, and the protein localizes to the plant cell nucleus when transiently expressed. The coupling of ssDNA binding and nuclear localizing activities suggests that VirE2 alone could mediate nuclear localization of ssDNA. In this study, fluorescently labeled ssDNA accumulated in the plant cell nucleus specifically when microinjected as a complex with VirE2. Microinjected ssDNA alone remained cytoplasmic. Import of VirE2-ssDNA complex into the nucleus via a protein import pathway was supported by (i) the inhibition of VirE2-ssDNA complex import in the presence of wheat germ agglutinin or a nonhydrolyzable GTP analog, both known inhibitors of protein nuclear import, and (ii) the retardation of import when complexes were prepared from a VirE2 mutant impaired in ssDNA binding and nuclear import.
Resumo:
A 70-kDa protein was specifically induced in Escherichia coli when the culture temperature was shifted from 37 to 15 degrees C. The protein was identified to be the product of the deaD gene (reassigned csdA) encoding a DEAD-box protein. Furthermore, after the shift from 37 to 15 degrees C, CsdA was exclusively localized in the ribosomal fraction and became a major ribosomal-associated protein in cells grown at 15 degrees C. The csdA deletion significantly impaired cell growth and the synthesis of a number of proteins, specifically the derepression of heat-shock proteins, at low temperature. Purified CsdA was found to unwind double-stranded RNA in the absence of ATP. Therefore, the requirement for CsdA in derepression of heat-shock protein synthesis is a cold shock-induced function possibly mediated by destabilization of secondary structures previously identified in the rpoH mRNA.
Resumo:
The cellular kinase known as PKR (protein kinase RNA-activated) is induced by interferon and activated by RNA. PKR is known to have antiviral properties due to its role in translational control. Active PKR phosphorylates eukaryotic initiation factor 2 alpha and leads to inhibition of translation, including viral translation. PKR is also known to function as a tumor suppressor, presumably by limiting the rate of tumor-cell translation and growth. Recent research has shown that RNA from the 3' untranslated region (3'UTR) of human alpha-tropomyosin has tumor-suppressor properties in vivo [Rastinejad, F., Conboy, M. J., Rando, T. A. & Blau, H. M. (1993) Cell 75, 1107-1117]. Here we report that purified RNA from the 3'UTR of human alpha-tropomyosin can inhibit in vitro translation in a manner consistent with activation of PKR. Inhibition of translation by tropomyosin 3'UTR RNA was observed in a rabbit reticulocyte lysate system, which is known to contain endogenous PKR but was not seen in wheat germ lysate, which is not responsive to a known activator of PKR. A control RNA purified in the same manner as the 3'UTR RNA did not inhibit translation in either system. The inhibition of translation observed in reticulocyte lysates was prevented by the addition of adenovirus virus-associated RNA1 (VA RNAI), an inhibitor of PKR activation. Tropomyosin 3'UTR RNA was bound by immunoprecipitated PKR and activated the enzyme in an in vitro kinase assay. These data suggest that activation of PKR could be the mechanism by which tropomyosin 3'UTR RNA exerts its tumor-suppression activity in vivo.
Resumo:
Although the origin of autoimmune antibodies to double-stranded DNA is not known, the variable-region structures of such antibodies indicate that they are produced in response to antigen-selective stimulation. In accordance with this, results from experiments using artificial complexes of DNA and DNA-binding polypeptides for immunizations have indicated that DNA may induce these antibodies. Hence, the immunogenicity of DNA in vivo may depend upon other structures or processes that may render DNA immunogenic. We report that in vivo expression of a single DNA-binding protein, the polyoma virus T antigen, is sufficient to initiate production of anti-double-stranded DNA and anti-histone antibodies but not a panel of other autoantigens. Expression of a mutant, non-DNA-binding T antigen did result in strong production of antibodies to the T antigen, but only borderline levels of antibodies to DNA and no detectable antibodies to histones. Nonexpressing plasmid DNA containing the complete cDNA sequence for T antigen did not evoke such immune responses, indicating that DNA by itself is not immunogenic in vivo. The results represent a conceptual advance in understanding a potential molecular basis for initiation of autoimmunity in systemic lupus erythematosus.
A single-stranded DNA binding protein binds the origin of replication of the duplex kinetoplast DNA.
Resumo:
Replication of the kinetoplast DNA (kDNA) minicircle of trypanosomatids initiates at a conserved 12-nt sequence, 5'-GGGGTTGGTGTA-3', termed the universal minicircle sequence (UMS). A sequence-specific single-stranded DNA-binding protein from Crithidia fasciculata binds the heavy strand of the 12-mer UMS. Whereas this UMS-binding protein (UMSBP) does not bind a duplex UMS dodecamer, it binds the double-stranded kDNA minicircle as well as a duplex minicircle fragment containing the origin-associated UMS. Binding of the minicircle origin region by the single-stranded DNA binding protein suggested the local unwinding of the DNA double helix at this site. Modification of thymine residues at this site by KMnO4 revealed that the UMS resides within an unwound or otherwise sharply distorted DNA at the minicircle origin region. Computer analysis predicts the sequence-directed curving of the minicircle origin region. Electrophoresis of a minicircle fragment containing the origin region in polyacrylamide gels revealed a significantly lower electrophoretic mobility than expected from its length. The fragment anomalous electrophoretic mobility is displayed only in its native conformation and is dependent on temperature and gel porosity, indicating the local curving of the DNA double helix. We suggest that binding of UMSBP at the minicircle origin of replication is possible through local unwinding of the DNA double helix at the UMS site. It is hypothesized here that this local melting is initiated through the untwisting of unstacked dinucleotide sequences at the bent origin site.
Resumo:
Escherichia coli RecA protein, in the presence of ATP or its analog adenosine 5'-[gamma-thio]triphosphate, polymerizes on single-stranded DNA to form nucleoprotein filaments that can then bind to homologous sequences on duplex DNA. The three-stranded joint molecule formed as a result of this binding event is a key intermediate in general recombination. We have used affinity cleavage to examine this three-stranded joint by incorporating a single thymidine-EDTA.Fe (T*) into the oligonucleotide part of the filament. Our analysis of the cleavage patterns from the joint molecule reveals that the nucleoprotein filament binds in the minor groove of an extended Watson-Crick duplex.
Resumo:
The yeast two-hybrid system and far-Western protein blot analysis were used to demonstrate dimerization of human double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in vivo and in vitro. A catalytically inactive mutant of PKR with a single amino acid substitution (K296R) was found to dimerize in vivo, and a mutant with a deletion of the catalytic domain of PKR retained the ability to dimerize. In contrast, deletion of the two dsRNA-binding motifs in the N-terminal regulatory domain of PKR abolished dimerization. In vitro dimerization of the dsRNA-binding domain required the presence of dsRNA. These results suggest that the binding of dsRNA by PKR is necessary for dimerization. The mammalian dsRNA-binding protein TRBP, originally identified on the basis of its ability to bind the transactivation region (TAR) of human immunodeficiency virus RNA, also dimerized with itself and with PKR in the yeast assay. Taken together, these results suggest that complexes consisting of different combinations of dsRNA-binding proteins may exist in vivo. Such complexes could mediate differential effects on gene expression and control of cell growth.