885 resultados para stochastic dynamic systems
Resumo:
Robot-control designers have begun to exploit the properties of the human immune system in order to produce dynamic systems that can adapt to complex, varying, real-world tasks. Jerne’s idiotypic-network theory has proved the most popular artificial-immune-system (AIS) method for incorporation into behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous efforts have mostly focused on evolving the network connections and have often worked with a single, preengineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA), multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that navigates around a maze by tracking colour. Results show that highly successful behaviour sets can be generated within about 25 minutes, and that much greater diversity can be obtained when multiple autonomous populations are used, rather than a single one.
Resumo:
International audience
Resumo:
Time-optimal response is an important and sometimes necessary characteristic of dynamic systems for specific applications. Power converters are widely used in different electrical systems and their dynamic response will affect the whole system. In many electrical systems like microgrids or voltage regulators which supplies sensitive loads fast dynamic response is a must. Minimum time is the fastest converter to compensate the step output reference or load change. Boost converters as one of the wildly used power converters in the electrical systems are aimed to be controlled in optimal time in this study. Linear controllers are not able to provide the optimal response for a boost converter however they are still useful and functional for other applications like reference tracking or stabilization. To obtain the fastest possible response from boost converters, a nonlinear control approach based on the total energy of the system is studied in this research. Total energy of the system considers as the basis for developing the presented method, since it is easy and accurate to measure besides that the total energy of the system represents the actual operating condition of the boost converter. The detailed model of a boost converter is simulated in MATLAB/Simulink to achieve the time optimal response of the boost converter by applying the developed method. The simulation results confirmed the ability of the presented method to secure the time optimal response of the boost converter under four different scenarios.
Resumo:
El presente texto se resume históricamente el estudio de los sistemas caóticos y se muestran las implicaciones que el paradigma de los sistemas dinámicos complejos tiene para la lingüística. Por último, se refieren algunas líneas de investigación actuale y se sugieren otras venideras.
Resumo:
La presente investigación consiste en determinar las aplicaciones existentes de las teorías del caos y las teorías de la complejidad en la cadena de suministro del sector agroindustrial colombiano. Además, tiene como propósito describir el sector de la agroindustria y la cadena de suministro, identificar los modelos de caos y complejidad y posteriormente determinar cuáles de éstos son aplicables al sector. Se define el caos como una sub-disciplina de las matemáticas que estudia sistemas complejos o dinámicos y tiene inmerso implicaciones filosóficas; por otra parte complejidad es la cualidad que adquiere un sistema en el que hay diversos componentes relacionados. Se ha identificado que en el ámbito colombiano existen diferentes estudios enfocados en la construcción de modelos agroindustriales, donde se adopta el concepto de complejidad para calificar el atributo de dichos modelos que involucran la armonización e integración de diferentes actores, desde los productores hasta los consumidores. En este estudio se emplea un estudio monográfico de tipo documental teniendo como unidad de análisis la cadena de suministro del sector agroindustrial. Los resultados indican que las teorías del caos y complejidad se encuentran presentes dentro de la cadena de suministros del sector agroindustrial colombiano, ya que en ella se ocurre la interconexión entre productores, procesadores y comercializadores, interactuando entre ellos y presentando alteraciones en su comportamiento económico a lo largo del tiempo en función de variaciones de las condiciones iniciales influenciadas por variables macroeconómicas, ambientales, sociales y políticas.
Resumo:
Este proyecto de investigación es un estudio de factibilidad de importación del calzado para dama desde China para la empresa colombiana Kenzo Jeans a través del cual se evalúan a profundidad estrategias en producto, precio y distribución para que la empresa valore la conveniencia del proceso. El objetivo de esta investigación es generar herramientas y estrategias necesarias para que la empresa logre tener una visión más completa al importar calzado desde China para la distribución en el mercado colombiano. Este estudio se realizó con el fin de brindar información para que la gerencia pueda tomar decisiones correctas, eliminando el desconocimiento que pueda generar mayor incertidumbre al involucrarse en un proceso de importación. Para llevar a cabo este proceso se determinaron unos criterios de evaluación y selección mínimos respecto al diseño del producto, precio, calidad, número de unidades mínimas para realizar el pedido, empaque y etiquetado con el que debían contar los posibles proveedores en China. Esto se realizó a través de un acercamiento a los potenciales proveedores y permitió filtrar a aquellos que podrían cumplir con los criterios exigidos por Kenzo Jeans. Una vez realizado el proceso de clasificación y selección se logró determinar que existe potencial en la importación de calzado de dama desde China. Hecho este proceso se sugiere a Kenzo Jeans realizar contacto directo con estas empresas a través de un posible viaje de negocios.
Resumo:
Nesta dissertação estudámos as séries temporais que representam a complexa dinâmica do comportamento. Demos especial atenção às técnicas de dinâmica não linear. As técnicas fornecem-nos uma quantidade de índices quantitativos que servem para descrever as propriedades dinâmicas do sistema. Estes índices têm sido intensivamente usados nos últimos anos em aplicações práticas em Psicologia. Estudámos alguns conceitos básicos de dinâmica não linear, as características dos sistemas caóticos e algumas grandezas que caracterizam os sistemas dinâmicos, que incluem a dimensão fractal, que indica a complexidade de informação contida na série temporal, os expoentes de Lyapunov, que indicam a taxa com que pontos arbitrariamente próximos no espaço de fases da representação do espaço dinâmico, divergem ao longo do tempo, ou a entropia aproximada, que mede o grau de imprevisibilidade de uma série temporal. Esta informação pode então ser usada para compreender, e possivelmente prever, o comportamento. ABSTRACT: ln this thesis we studied the time series that represent the complex dynamic behavior. We focused on techniques of nonlinear dynamics. The techniques provide us a number of quantitative indices used to describe the dynamic properties of the system. These indices have been extensively used in recent years in practical applications in psychology. We studied some basic concepts of nonlinear dynamics, the characteristics of chaotic systems and some quantities that characterize the dynamic systems, including fractal dimension, indicating the complexity of information in the series, the Lyapunov exponents, which indicate the rate at that arbitrarily dose points in phase space representation of a dynamic, vary over time, or the approximate entropy, which measures the degree of unpredictability of a series. This information can then be used to understand and possibly predict the behavior.
Resumo:
In recent years, radars have been used in many applications such as precision agriculture and advanced driver assistant systems. Optimal techniques for the estimation of the number of targets and of their coordinates require solving multidimensional optimization problems entailing huge computational efforts. This has motivated the development of sub-optimal estimation techniques able to achieve good accuracy at a manageable computational cost. Another technical issue in advanced driver assistant systems is the tracking of multiple targets. Even if various filtering techniques have been developed, new efficient and robust algorithms for target tracking can be devised exploiting a probabilistic approach, based on the use of the factor graph and the sum-product algorithm. The two contributions provided by this dissertation are the investigation of the filtering and smoothing problems from a factor graph perspective and the development of efficient algorithms for two and three-dimensional radar imaging. Concerning the first contribution, a new factor graph for filtering is derived and the sum-product rule is applied to this graphical model; this allows to interpret known algorithms and to develop new filtering techniques. Then, a general method, based on graphical modelling, is proposed to derive filtering algorithms that involve a network of interconnected Bayesian filters. Finally, the proposed graphical approach is exploited to devise a new smoothing algorithm. Numerical results for dynamic systems evidence that our algorithms can achieve a better complexity-accuracy tradeoff and tracking capability than other techniques in the literature. Regarding radar imaging, various algorithms are developed for frequency modulated continuous wave radars; these algorithms rely on novel and efficient methods for the detection and estimation of multiple superimposed tones in noise. The accuracy achieved in the presence of multiple closely spaced targets is assessed on the basis of both synthetically generated data and of the measurements acquired through two commercial multiple-input multiple-output radars.
Resumo:
This dissertation consists of three self-contained papers that are related to two main topics. In particular, the first and third studies focus on labor market modeling, whereas the second essay presents a dynamic international trade setup.rnrnIn Chapter "Expenses on Labor Market Reforms during Transitional Dynamics", we investigate the arising costs of a potential labor market reform from a government point of view. To analyze various effects of unemployment benefits system changes, this chapter develops a dynamic model with heterogeneous employed and unemployed workers.rn rnIn Chapter "Endogenous Markup Distributions", we study how markup distributions adjust when a closed economy opens up. In order to perform this analysis, we first present a closed-economy general-equilibrium industry dynamics model, where firms enter and exit markets, and then extend our analysis to the open-economy case.rn rnIn Chapter "Unemployment in the OECD - Pure Chance or Institutions?", we examine effects of aggregate shocks on the distribution of the unemployment rates in OECD member countries.rn rnIn all three chapters we model systems that behave randomly and operate on stochastic processes. We therefore exploit stochastic calculus that establishes clear methodological links between the chapters.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
* This research was supported by a grant from the Greek Ministry of Industry and Technology.
Resumo:
Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.
Resumo:
We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.