973 resultados para sterol biosynthesis
Resumo:
Phosphatidylserine decarboxylase of E. coli, a cytoplasmic membrane protein, catalyzes the formation of phosphatidylethanolamine, the principal phospholipid of the organism. The activity of the enzyme is dependent on a covalently bound pyruvate (Satre and Kennedy (1978) J. Biol. Chem. 253, 479-483). This study shows that the enzyme consists of two nonidentical subunits, $\alpha$ (Mr = 7,332) and $\beta$ (Mr = 28,579), with the pyruvate prosthetic group in amide linkage to the amino-terminus of the $\alpha$ subunit. Partial protein sequence and DNA sequence analysis reveal that the two subunits are derived from a proenzyme ($\pi$ subunit, Mr = 35,893) through a post-translational event. During the conversion of the proenzyme to the $\alpha$ and $\beta$ subunits, the peptide bond between Gly253-Ser254 is cleaved, and Ser254 is converted to the pyruvate prosthetic group at the amino-terminus of the $\alpha$ subunit (Li and Dowhan (1988) J. Biol. Chem. 263, 11516-11522).^ The proenzyme cannot be detected in cells carrying either single or multiple copies of the gene (psd), but can be observed in a T7 RNA polymerase/promoter and transcription-translation system. The cleavage of the wild-type proenzyme occurs rapidly with a half-time on the order of 2 min. Changing of the Ser254 to cysteine (S254C) or threonine (S254T) slows the cleavage rate dramatically and results in mutants with a half-time for processing of around 2-4 h. Change of the Ser254 to alanine (S254A) blocks the cleavage of the proenzyme. The reduced processing rate with the mutations of the proenzyme is consistent with less of the functional enzyme being made. Mutants S254C and S254T produce $\sim$15% and $\sim$1%, respectively, of the activity of the wild-type allele, but can still complement a temperature-sensitive mutant of the psd locus. Neither detectable activity nor complementation is observed by mutant S254A. These results are consistent with the hydroxyl-group of the Ser254 playing a critical role in the cleavage of the peptide bond Gly253-Ser254 of the pro-phosphatidylserine decarboxylase, and support the mechanism proposed by Snell and co-workers (Recsei and Snell (1984) Annu. Rev. Biochem. 53, 357-387) for the formation of the prosthetic group of pyruvate-dependent decarboxylases. ^
Resumo:
In groundwater-fed fen peatlands, the surface biomass decays rapidly and, as a result, highly humified peat is formed. A high degree of humification constrains palaeoecological studies because reliable identification of plant remains is hampered. Organic geochemistry techniques as a means of identifying historical plant communities have been successfully applied tobog peat. The method has also been applied to fen peat, but without reference to the composition of fen plants. We have applied selected organic geochemistry methods to determine the composition of the neutral lipid fractions from 12 living fen plants, to investigate the potential for the distributions to characterize and separate different fen plants and plant groups. Our results show correspondence with previous studies, e.g. C23 and C25n-alkanes dominating Sphagnum spp. and C27 to C31 alkanes dominating vascular plants. However, we also found similarities in n-alkane distributions between Sphagnum spp. and the below ground parts of some vascular plants. We tested the efficiency of different n-alkane ratios to separate species and plant groups. The ratios used for bog studies (e.g. n-C23/n-C25 and n-C23/n-C29) did not work as consistently for fen plants. Some differences in sterol distribution were found between vascular plants and mosses; in general vascular plants had a higher concentration of sterols. When distributions of n-alkanes, n-alkane ratios and sterols were all included as variables, redundancy analysis (RDA) separated different plant groups into their own clusters. Our results imply that the pattern for bog biomarkers cannot directly be applied to fen environments. Nevertheless, they encourage further testing to determine whether or not the identification of plant groups, plants or plant parts from highly humified peat is possible by applying fen species-specific biomarker proxies.
Resumo:
Background: [NiFe] hydrogenases are enzymes that catalyze the oxidation of hydrogen into protons and electrons, to use H2 as energy source, or the production of hydrogen through proton reduction, as an escape valve for the excess of reduction equivalents in anaerobic metabolism. Biosynthesis of [NiFe] hydrogenases is a complex process that occurs in the cytoplasm, where a number of auxiliary proteins are required to synthesize and insert the metal cofactors into the enzyme structural units. The endosymbiotic bacterium Rhizobium leguminosarum requires the products of eighteen genes (hupSLCDEFGHIJKhypABFCDEX) to synthesize an active hydrogenase. hupF and hupK genes are found only in hydrogenase clusters from bacteria expressing hydrogenase in the presence of oxygen. Results: HupF is a HypC paralogue with a similar predicted structure, except for the C-terminal domain present only in HupF. Deletion of hupF results in the inability to process the hydrogenase large subunit HupL, and also in reduced stability of this subunit when cells are exposed to high oxygen tensions. A ?hupF mutant was fully complemented for hydrogenase activity by a C-terminal deletion derivative under symbiotic, ultra low-oxygen tensions, but only partial complementation was observed in free living cells under higher oxygen tensions (1% or 3%). Co-purification experiments using StrepTag-labelled HupF derivatives and mass spectrometry analysis indicate the existence of a major complex involving HupL and HupF, and a less abundant HupF-HupK complex. Conclusions: The results indicate that HupF has a dual role during hydrogenase biosynthesis: it is required for hydrogenase large subunit processing and it also acts as a chaperone to stabilize HupL when hydrogenase is synthesized in the presence of oxygen.
Resumo:
Some rhizobia induce a hydrogen (H2)-uptake system with a [NiFe] hydrogenase along with nitrogenase to recover part of the energy lost as H2. Biosynthesis of NiFe hydrogenases is a process that ocurrs in the cytoplasm, where a number of auxiliary proteins (products of hup and hyp genes) are required to synthesize and insert the metal cofactors into the enzyme structural units. Although HypC is expressed in all hydrogenase systems, HupF and HupK are found only in bacteria that express the hydrogenase in the presence of oxygen (O2). Co-purification experiments have demonstrated HypC-HupK and HypC-HupL interactions. Results have shown that some conserved residues from HypC and HupK play a protective role of hydrogenase against the presence of O2.
Resumo:
Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.
Resumo:
Auxin is associated with the regulation of virtually every aspect of plant growth and development. Many previous genetic and biochemical studies revealed that, among the proposed routes for the production of auxin, the so-called indole-3-pyruvic acid (IPA) pathway is the main source for indole-3-acetic acid (IAA) in plants. The IPA pathway involves the action of 2 classes of enzymes, tryptophan-pyruvate aminotransferases (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1(TAA1)/TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR)) and flavin monooxygenases (YUCCA). Both enzyme classes appear to be encoded by small gene families in Arabidopsis consisting of 5 and 11 members, respectively. We recently showed that it is possible to induce transcript accumulation of 2 YUCCA genes, YUC8 and YUC9, by methyl jasmonate treatment. Both gene products were demonstrated to contribute to auxin biosynthesis in planta.1 Here we report that the overexpression of YUC8 as well as YUC9 led to strong lignification of plant aerial tissues. Furthermore, new evidence indicates that this abnormally strong secondary growth is linked to increased levels of ethylene production.
Resumo:
The Molybdenum-nitrogenase is responsible for most biological nitrogen fixation activity (BNF) in the biosphere. Due to its great agronomical importance, it has been the subject of profound genetic and biochemical studies. The Mo nitrogenase carries at its active site a unique iron-molybdenum cofactor (FeMoco) that consists of an inorganic 7 Fe, 1 Mo, 1 C, 9 S core coordinated to the organic acid homocitrate. Biosynthesis of FeMo-co occurs outside nitrogenase through a complex and highly regulated pathway involving proteins acting as molecular scaffolds, metallocluster carriers or enzymes that provide substrates in appropriate chemical forms. Specific expression regulatory factors tightly control the accumulation levels of all these other components. Insertion of FeMo-co into a P-cluster containing apo-NifDK polypeptide results in nitrogenase reconstitution. Investigation of FeMo-co biosynthesis has uncovered new radical chemistry reactions and new roles for Fe-S clusters in biology.
Resumo:
Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a β-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the α-branch of mycolic acids, followed by the joining of these two branches.
Resumo:
Vitamin C (l-ascorbic acid; AsA) acts as a potent antioxidant and cellular reductant in plants and animals. AsA has long been known to have many critical physiological roles in plants, yet its biosynthesis is only currently being defined. A pathway for AsA biosynthesis that features GDP-mannose and l-galactose has recently been proposed for plants. We have isolated a collection of AsA-deficient mutants of Arabidopsis thaliana that are valuable tools for testing of an AsA biosynthetic pathway. The best-characterized of these mutants (vtc1) contains ≈25% of wild-type AsA and is defective in AsA biosynthesis. By using a combination of biochemical, molecular, and genetic techniques, we have demonstrated that the VTC1 locus encodes a GDP-mannose pyrophosphorylase (mannose-1-P guanyltransferase). This enzyme provides GDP-mannose, which is used for cell wall carbohydrate biosynthesis and protein glycosylation as well as for AsA biosynthesis. In addition to genetically defining the first locus involved in AsA biosynthesis, this work highlights the power of using traditional mutagenesis techniques coupled with the Arabidopsis Genome Initiative to rapidly clone physiologically important genes.
Resumo:
Phosphatidylserine (PtdSer) synthesis in Chinese hamster ovary (CHO) cells occurs through the exchange of l-serine with the base moiety of phosphatidylcholine or phosphatidylethanolamine. The synthesis is depressed on the addition of PtdSer to the culture medium. A CHO cell mutant named mutant 29, whose PtdSer biosynthesis is highly resistant to this depression by exogenous PtdSer, has been isolated from CHO-K1 cells. In the present study, the PtdSer-resistant PtdSer biosynthesis in the mutant was traced to a point mutation in the PtdSer synthase I gene, pssA, resulting in the replacement of Arg-95 of the synthase by lysine. Introduction of the mutant pssA cDNA, but not the wild-type pssA cDNA, into CHO-K1 cells induced the PtdSer-resistant PtdSer biosynthesis. In a cell-free system, the serine base-exchange activity of the wild-type pssA-transfected cells was inhibited by PtdSer, but that of the mutant pssA-transfected cells was resistant to the inhibition. Like the mutant 29 cells, the mutant pssA-transfected cells grown without exogenous PtdSer exhibited an ≈2-fold increase in the cellular PtdSer level compared with that in CHO-K1 cells, although the wild-type pssA-transfected cells did not exhibit such a significant increase. These results indicated that the inhibition of PtdSer synthase I by PtdSer is essential for the maintenance of a normal PtdSer level in CHO-K1 cells and that Arg-95 of the synthase is a crucial residue for the inhibition.
Resumo:
Plants, unlike other higher eukaryotes, possess all the necessary enzymatic equipment for de novo synthesis of methionine, an amino acid that supports additional roles than simply serving as a building block for protein synthesis. This is because methionine is the immediate precursor of S-adenosylmethionine (AdoMet), which plays numerous roles of being the major methyl-group donor in transmethylation reactions and an intermediate in the biosynthesis of polyamines and of the phytohormone ethylene. In addition, AdoMet has regulatory function in plants behaving as an allosteric activator of threonine synthase. Among the AdoMet-dependent reactions occurring in plants, methylation of cytosine residues in DNA has raised recent interest because impediment of this function alters plant morphology and induces homeotic alterations in flower organs. Also, AdoMet metabolism seems somehow implicated in plant growth via an as yet fully understood link with plant-growth hormones such as cytokinins and auxin and in plant pathogen interactions. Because of this central role in cellular metabolism, a precise knowledge of the biosynthetic pathways that are responsible for homeostatic regulation of methionine and AdoMet in plants has practical implications, particularly in herbicide design.
Resumo:
In a survey of microbial systems capable of generating unusual metabolite structural variability, Streptomyces venezuelae ATCC 15439 is notable in its ability to produce two distinct groups of macrolide antibiotics. Methymycin and neomethymycin are derived from the 12-membered ring macrolactone 10-deoxymethynolide, whereas narbomycin and pikromycin are derived from the 14-membered ring macrolactone, narbonolide. This report describes the cloning and characterization of the biosynthetic gene cluster for these antibiotics. Central to the cluster is a polyketide synthase locus (pikA) that encodes a six-module system comprised of four multifunctional proteins, in addition to a type II thioesterase (TEII). Immediately downstream is a set of genes for desosamine biosynthesis (des) and macrolide ring hydroxylation. The study suggests that Pik TEII plays a role in forming a metabolic branch through which polyketides of different chain length are generated, and the glycosyl transferase (encoded by desVII) has the ability to catalyze glycosylation of both the 12- and 14-membered ring macrolactones. Moreover, the pikC-encoded P450 hydroxylase provides yet another layer of structural variability by introducing regiochemical diversity into the macrolide ring systems. The data support the notion that the architecture of the pik gene cluster as well as the unusual substrate specificity of particular enzymes contributes to its ability to generate four macrolide antibiotics.