871 resultados para statistical spatial analysis
Resumo:
Investigating tree's spatial patterns according to their size classes and according to their more abundant species can provide evidences about the structure of the vegetal community, since the spatial pattern is a key question for forestry ecology studies. The tree spatial organization patterns on the environment depend on several ecological processes and on the specific characteristics of each environment, so that the best understanding of this frame provides important elements for the knowledge on forestry formation. This paper aimed to study tree spatial patterns, according to the diameter classes and from four most abundant species in different forests, in order to provide evidences regarding to the ecology of each vegetal community. The spatial pattern description in each forestry formation was developed using Ripley's K function. The studied forestry formations were: Ombrophilous Forest, Cerradao, Seasonal Forest and Restinga Forest. In this work, a 10.24 ha plot was installed in each forestry formation, and every tree, with a circumference at breast height (CBH) larger than 15 cm were measured, georeferenced and identified. The obtained data highlights the aggregated character in tropical forests, as observed in every studied forest. The 'Cerraddo' and 'Restinga' forest trees showed close aggregate patterns. In the Ombrophilous forest, for all distance scales, the aggregate pattern was meaningful. In the seasonal forest, a random tendency was observed, although a meaningful aggregation was observed in all short distances. The spatial pattern by diameter classes was generally aggregated for trees smaller than 10 cm of diameter and between 10 and 20 cm and random for the others, proving the existence of a tendency which in young trees is more aggregated than in old ones. The spatial pattern of the dominant species is always strongly similar to the general pattern of each forestry formation. The differences between the spatial patterns of two or three coincident species, among the forestry formations, indicate that its pattern is influenced by each different environment. This stands out the importance of its self-ecology and of its ecological processes, intrinsic of each community that can explain the observed patterns.
Resumo:
Spatial data warehouses (SDWs) allow for spatial analysis together with analytical multidimensional queries over huge volumes of data. The challenge is to retrieve data related to ad hoc spatial query windows according to spatial predicates, avoiding the high cost of joining large tables. Therefore, mechanisms to provide efficient query processing over SDWs are essential. In this paper, we propose two efficient indices for SDW: the SB-index and the HSB-index. The proposed indices share the following characteristics. They enable multidimensional queries with spatial predicate for SDW and also support predefined spatial hierarchies. Furthermore, they compute the spatial predicate and transform it into a conventional one, which can be evaluated together with other conventional predicates by accessing a star-join Bitmap index. While the SB-index has a sequential data structure, the HSB-index uses a hierarchical data structure to enable spatial objects clustering and a specialized buffer-pool to decrease the number of disk accesses. The advantages of the SB-index and the HSB-index over the DBMS resources for SDW indexing (i.e. star-join computation and materialized views) were investigated through performance tests, which issued roll-up operations extended with containment and intersection range queries. The performance results showed that improvements ranged from 68% up to 99% over both the star-join computation and the materialized view. Furthermore, the proposed indices proved to be very compact, adding only less than 1% to the storage requirements. Therefore, both the SB-index and the HSB-index are excellent choices for SDW indexing. Choosing between the SB-index and the HSB-index mainly depends on the query selectivity of spatial predicates. While low query selectivity benefits the HSB-index, the SB-index provides better performance for higher query selectivity.
Resumo:
A space-time analysis of American visceral leishmaniasis (AVL) in humans in the city of Bauru, Sao Paulo State, Brazil was carried out based on 239 cases diagnosed between June 2003 and October 2008. Spatial analysis of the disease showed that cases occurred especially in the city's urban areas. AVL annual incidence rates were calculated, demonstrating that the highest rate occurred in 2006 (19.55/100,000 inhabitants). This finding was confirmed by the time series analysis, which also showed a positive tendency over the period analyzed. The present study allows us to conclude that the disease was clustered in the Southwest side of the city in 2006, suggesting that this area may require special attention with regard to control and prevention measures.
Resumo:
This study aimed to verify the impact of inhalable particulate matter (PM10) on cancer incidence and mortality in the city of São Paulo, Brazil. Statistical techniques were used to investigate the relationship between PM10 on cancer incidence and mortality in selected districts. For some types of cancer (skin, lung, thyroid, larynx, and bladder) and some periods, the correlation coefficients ranged from 0.60 to 0.80 for incidence. Lung cancer mortality showed more correlations during the overall period. Spatial analysis showed that districts distant from the city center showed higher than expected relative risk, depending on the type of cancer. According to the study, urban PM10 can contribute to increased incidence of some cancers and may also contribute to increased cancer mortality. The results highlight the need to adopt measures to reduce atmospheric PM10 levels and the importance of their continuous monitoring.
Resumo:
A space-time analysis of American visceral leishmaniasis (AVL) in humans in the city of Bauru, São Paulo State, Brazil was carried out based on 239 cases diagnosed between June 2003 and October 2008. Spatial analysis of the disease showed that cases occurred especially in the city's urban areas. AVL annual incidence rates were calculated, demonstrating that the highest rate occurred in 2006 (19.55/100,000 inhabitants). This finding was confirmed by the time series analysis, which also showed a positive tendency over the period analyzed. The present study allows us to conclude that the disease was clustered in the Southwest side of the city in 2006, suggesting that this area may require special attention with regard to control and prevention measures.
Resumo:
The first part of my work consisted in samplings conduced in nine different localities of the salento peninsula and Apulia (Italy): Costa Merlata (BR), Punta Penne (BR), Santa Cesarea terme (LE), Santa Caterina (LE), Torre Inserraglio (LE), Torre Guaceto (BR), Porto Cesareo (LE), Otranto (LE), Isole Tremiti (FG). I collected data of species percentage covering from the infralittoral rocky zone, using squares of 50x50 cm. We considered 3 sites for location and 10 replicates for each site, which has been taken randomly. Then I took other data about the same places, collected in some years, and I combined them together, to do a spatial analysis. So I started from a data set of 1896 samples but I decided not to consider time as a factor because I have reason to think that in this period of time anthropogenic stressors and their effects (if present), didn’t change considerably. The response variable I’ve analysed is the covering percentage of an amount of 243 species (subsequently merged into 32 functional groups), including seaweeds, invertebrates, sediment and rock. 2 After the sampling, I have been spent a period of two months at the Hopkins Marine Station of Stanford University, in Monterey (California,USA), at Fiorenza Micheli's laboratory. I've been carried out statistical analysis on my data set, using the software PRIMER 6. My explorative analysis starts with a nMDS in PRIMER 6, considering the original data matrix without, for the moment, the effect of stressors. What comes out is a good separation between localities and it confirms the result of ANOSIM analysis conduced on the original data matrix. What is possible to ensure is that there is not a separation led by a geographic pattern, but there should be something else that leads the differences. Is clear the presence of at least three groups: one composed by Porto cesareo, Torre Guaceto and Isole tremiti (the only marine protected areas considered in this work); another one by Otranto, and the last one by the rest of little, impacted localities. Inside the localities that include MPA(Marine Protected Areas), is also possible to observe a sort of grouping between protected and controlled areas. What comes out from SIMPER analysis is that the most of the species involved in leading differences between populations are not rare species, like: Cystoseira spp., Mytilus sp. and ECR. Moreover I assigned discrete values (0,1,2) of each stressor to all the sites I considered, in relation to the intensity with which the anthropogenic factor affect the localities. 3 Then I tried to estabilish if there were some significant interactions between stressors: by using Spearman rank correlation and Spearman tables of significance, and taking into account 17 grades of freedom, the outcome shows some significant stressors interactions. Then I built a nMDS considering the stressors as response variable. The result was positive: localities are well separeted by stressors. Consequently I related the matrix with 'localities and species' with the 'localities and stressors' one. Stressors combination explains with a good significance level the variability inside my populations. I tried with all the possible data transformations (none, square root, fourth root, log (X+1), P/A), but the fourth root seemed to be the best one, with the highest level of significativity, meaning that also rare species can influence the result. The challenge will be to characterize better which kind of stressors (including also natural ones), act on the ecosystem; and give them a quantitative and more accurate values, trying to understand how they interact (in an additive or non-additive way).
Resumo:
Detecting small amounts of genetic subdivision across geographic space remains a persistent challenge. Often a failure to detect genetic structure is mistaken for evidence of panmixia, when more powerful statistical tests may uncover evidence for subtle geographic differentiation. Such slight subdivision can be demographically and evolutionarily important as well as being critical for management decisions. We introduce here a method, called spatial analysis of shared alleles (SAShA), that detects geographically restricted alleles by comparing the spatial arrangement of allelic co-occurrences with the expectation under panmixia. The approach is allele-based and spatially explicit, eliminating the loss of statistical power that can occur with user-defined populations and statistical averaging within populations. Using simulated data sets generated under a stepping-stone model of gene flow, we show that this method outperforms spatial autocorrelation (SA) and UST under common real-world conditions: at relatively high migration rates when diversity is moderate or high, especially when sampling is poor. We then use this method to show clear differences in the genetic patterns of 2 nearshore Pacific mollusks, Tegula funebralis (5 Chlorostoma funebralis) and Katharina tunicata, whose overall patterns of within-species differentiation are similar according to traditional population genetics analyses. SAShA meaningfully complements UST/FST, SA, and other existing geographic genetic analyses and is especially appropriate for evaluating species with high gene flow and subtle genetic differentiation.
Resumo:
Spatial analyses of plant-distribution patterns can provide inferences about intra- and interspecific biotic interactions. Yet, such analyses are rare for clonal plants because effective tools (i.e., molecular markers) needed to map naturally occurring clonal individuals have only become available recently. Clonal plants are unique in that a single genotype has a potential to spatially place new individuals (i.e., ramets) in response to intra- and interspecific biotic interactions. Laboratory and greenhouse studies suggest that some clonal plants can avoid intra-genet, inter-genet, and inter-specific competition via rootplacement patterns. An intriguing and yet to be explored question is whether a spatial signature of such multi-level biotic interactions can be detected in natural plant communities. The facultatively clonal Serenoa repens and non-clonal Sabal etonia are ecologically similar and co-dominant palmettos that sympatrically occur in the Florida peninsula. We used amplified fragment length polymorphisms (AFLPs) to identify Serenoa genets and also to assign field-unidentifiable small individuals as Sabal seedlings, Serenoa seedlings, or Serenoa vegetative sprouts. Then, we conducted univariate and bivariate multi-distance spatial analyses to examine the spatial interactions of Serenoa (n=271) and Sabal (n=137) within a 20x20 m grid at three levels, intragenet, intergenet and interspecific. We found that spatial interactions were not random at all three levels of biotic interactions. Serenoa genets appear to spatially avoid self-competition as well as intergenet competition. Furthermore, Serenoa and Sabal were spatially negatively associated with each other. However, this negative association pattern was also evident in a spatial comparison between non-clonal Serenoa and Sabal, suggesting that Serenoa genets’ spatial avoidance of Sabal through placement of new ramets is not the explanation of the interspecific-level negative spatial pattern. Our results emphasize the importance of investigating spatial signatures of biotic as well as abiotic interactions at multiple levels in understanding spatial distribution patterns of clonal plants in natural plant communities.
Resumo:
Agricultural intensification has caused a decline in structural elements in European farmland, where natural habitats are increasingly fragmented. The loss of habitat structures has a detrimental effect on biodiversity and affects bat species that depend on vegetation structures for foraging and commuting. We investigated the impact of connectivity and configuration of structural landscape elements on flight activity, species richness and diversity of insectivorous bats and distinguished three bat guilds according to species-specific bioacoustic characteristics. We tested whether bats with shorter-range echolocation were more sensitive to habitat fragmentation than bats with longer-range echolocation. We expected to find different connectivity thresholds for the three guilds and hypothesized that bats prefer linear over patchy landscape elements. Bat activity was quantified using repeated acoustic monitoring in 225 locations at 15 study plots distributed across the Swiss Central Plateau, where connectivity and the shape of landscape elements were determined by spatial analysis (GIS). Spectrograms of bat calls were assigned to species with the software batit by means of image recognition and statistical classification algorithms. Bat activity was significantly higher around landscape elements compared to open control areas. Short- and long-range echolocating bats were more active in well-connected landscapes, but optimal connectivity levels differed between the guilds. Species richness increased significantly with connectivity, while species diversity did not (Shannon's diversity index). Total bat activity was unaffected by the shape of landscape elements. Synthesis and applications. This study highlights the importance of connectivity in farmland landscapes for bats, with shorter-range echolocating bats being particularly sensitive to habitat fragmentation. More structurally diverse landscape elements are likely to reduce population declines of bats and could improve conditions for other declining species, including birds. Activity was highest around optimal values of connectivity, which must be evaluated for the different guilds and spatially targeted for a region's habitat configuration. In a multi-species approach, we recommend the reintroduction of structural elements to increase habitat heterogeneity should become part of agri-environment schemes.
Resumo:
Background. The purpose of this study was to describe the risk factors and demographics of persons with salmonellosis and shigellosis and to investigate both seasonal and spatial variations in the occurrence of these infections in Texas from 2000 to 2004, utilizing time series analyses and the geographic information system digital mapping methods. ^ Methods. Spatial Analysis: MapInfo software was used to map the distribution of age-adjusted rates of reported shigellosis and salmonellosis in Texas from 2000–2004 by zip codes. Census data on above or below poverty level, household income, highest level of educational attainment, race, ethnicity, and urban/rural community status was obtained from the 2000 Decennial Census for each zip code. The zip codes with the upper 10% and lower 10% were compared using t-tests and logistic regression to determine whether there were any potential risk factors. ^ Temporal analysis. Seasonal patterns in the prevalence of infections in Texas from 2000 to 2003 were determined by performing time-series analysis on the numbers of cases of salmonellosis and shigellosis. A linear regression was also performed to assess for trends in the incidence of each disease, along with auto-correlation and multi-component cosinor analysis. ^ Results. Spatial analysis: Analysis by general linear model showed a significant association between infection rates and age, with young children aged less than 5 and those aged 5–9 years having increased risk of infection for both disease conditions. The data demonstrated that those populations with high percentages of people who attained a higher than high school education were less likely to be represented in zip codes with high rates of shigellosis. However, for salmonellosis, logistic regression models indicated that when compared to populations with high percentages of non-high school graduates, having a high school diploma or equivalent increased the odds of having a high rate of infection. ^ Temporal analysis. For shigellosis, multi-component cosinor analyses were used to determine the approximated cosine curve which represented a statistically significant representation of the time series data for all age groups by sex. The shigellosis results show 2 peaks, with a major peak occurring in June and a secondary peak appearing around October. Salmonellosis results showed a single peak and trough in all age groups with the peak occurring in August and the trough occurring in February. ^ Conclusion. The results from this study can be used by public health agencies to determine the timing of public health awareness programs and interventions in order to prevent salmonellosis and shigellosis from occurring. Because young children depend on adults for their meals, it is important to increase the awareness of day-care workers and new parents about modes of transmission and hygienic methods of food preparation and storage. ^
Resumo:
Background. Research into methods for recovery from fatigue due to exercise is a popular topic among sport medicine, kinesiology and physical therapy. However, both the quantity and quality of studies and a clear solution of recovery are lacking. An analysis of the statistical methods in the existing literature of performance recovery can enhance the quality of research and provide some guidance for future studies. Methods: A literature review was performed using SCOPUS, SPORTDiscus, MEDLINE, CINAHL, Cochrane Library and Science Citation Index Expanded databases to extract the studies related to performance recovery from exercise of human beings. Original studies and their statistical analysis for recovery methods including Active Recovery, Cryotherapy/Contrast Therapy, Massage Therapy, Diet/Ergogenics, and Rehydration were examined. Results: The review produces a Research Design and Statistical Method Analysis Summary. Conclusion: Research design and statistical methods can be improved by using the guideline from the Research Design and Statistical Method Analysis Summary. This summary table lists the potential issues and suggested solutions, such as, sample size calculation, sports specific and research design issues consideration, population and measure markers selection, statistical methods for different analytical requirements, equality of variance and normality of data, post hoc analyses and effect size calculation.^
A descriptive and exploratory analysis of occupational injuries at a chemical manufacturing facility
Resumo:
A retrospective study of 1353 occupational injuries occurring at a chemical manufacturing facility in Houston, Texas from January, 1982 through May, 1988 was performed to investigate the etiology of the occupational injury process. Injury incidence rates were calculated for various sub-populations of workers to determine differences in the risk of injury for various groups. Linear modeling techniques were used to determine the association between certain collected independent variables and severity of an injury event. Finally, two sub-groups of the worker population, shiftworkers and injury recidivists, were examined. An injury recidivist as defined is any worker experiencing one or more injury per year. Overall, female shiftworkers evidenced the highest average injury incidence rate compared to all other worker groups analyzed. Although the female shiftworkers were younger and less experienced, the etiology of their increased risk of injury remains unclear, although the rigors of performing shiftwork itself or ergonomic factors are suspect. In general, females were injured more frequently than males, but they did not incur more severe injuries. For all workers, many injuries were caused by erroneous or foregone training, and risk taking behaviors. Injuries of these types are avoidable. The distribution of injuries by severity level was bimodal; either injuries were of minor or major severity with only a small number of cases falling in between. Of the variables collected, only the type of injury incurred and the worker's titlecode were statistically significantly associated with injury severity. Shiftworkers did not sustain more severe injuries than other worker groups. Injury to shiftworkers varied as a 24-hour pattern; the greatest number occurred between 1200-1230 hours, (p = 0.002) by Cosinor analysis. Recidivists made up 3.3% of the population (23 males and 10 females), yet suffered 17.8% of the injuries. Although past research suggests that injury recidivism is a random statistical event, analysis of the data by logistic regression implicates gender, area worked, age and job titlecode as being statistically significantly related to injury recidivism at this facility. ^
Resumo:
El presente artículo se propone estudiar la distribución espacial de los migrantes internacionales en la Ciudad Autónoma de Buenos Aires, mediante un análisis estadístico-cartográfico que toma como fuente de datos el Censo Nacional de Población, Hogares y Viviendas 2010. Se realiza un análisis socioespacial a partir de datos censales georeferenciados mediante Sistemas de Información Geográfica (SIG), y se trabaja a partir de la construcción de mapas temáticos y el cálculo de indicadores estadísticos de distribución espacial. En este sentido, desde un abordaje metodológico cuantitativo que combina una escala macrosocial (en tanto abarca a esta ciudad en su totalidad) y microespacial (en la medida que permite visualizar diferencias que se producen a nivel intraurbano), se analiza cómo la presencia urbana de estos grupos, resultado de trayectorias sociales y espaciales diferentes, se manifiesta en patrones de localización particulares en el territorio urbano
Resumo:
El presente artículo se propone estudiar la distribución espacial de los migrantes internacionales en la Ciudad Autónoma de Buenos Aires, mediante un análisis estadístico-cartográfico que toma como fuente de datos el Censo Nacional de Población, Hogares y Viviendas 2010. Se realiza un análisis socioespacial a partir de datos censales georeferenciados mediante Sistemas de Información Geográfica (SIG), y se trabaja a partir de la construcción de mapas temáticos y el cálculo de indicadores estadísticos de distribución espacial. En este sentido, desde un abordaje metodológico cuantitativo que combina una escala macrosocial (en tanto abarca a esta ciudad en su totalidad) y microespacial (en la medida que permite visualizar diferencias que se producen a nivel intraurbano), se analiza cómo la presencia urbana de estos grupos, resultado de trayectorias sociales y espaciales diferentes, se manifiesta en patrones de localización particulares en el territorio urbano.
Resumo:
El presente artículo se propone estudiar la distribución espacial de los migrantes internacionales en la Ciudad Autónoma de Buenos Aires, mediante un análisis estadístico-cartográfico que toma como fuente de datos el Censo Nacional de Población, Hogares y Viviendas 2010. Se realiza un análisis socioespacial a partir de datos censales georeferenciados mediante Sistemas de Información Geográfica (SIG), y se trabaja a partir de la construcción de mapas temáticos y el cálculo de indicadores estadísticos de distribución espacial. En este sentido, desde un abordaje metodológico cuantitativo que combina una escala macrosocial (en tanto abarca a esta ciudad en su totalidad) y microespacial (en la medida que permite visualizar diferencias que se producen a nivel intraurbano), se analiza cómo la presencia urbana de estos grupos, resultado de trayectorias sociales y espaciales diferentes, se manifiesta en patrones de localización particulares en el territorio urbano