887 resultados para spermatogonial stem cell transplantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hox family are master transcriptional regulators of developmental processes, including hematopoiesis. The Hox regulators, caudal homeobox factors (Cdx1-4), and Meis1, along with several individual Hox proteins, are implicated in stem cell expansion during embryonic development, with gene dosage playing a significant role in the overall function of the integrated Hox network. To investigate the role of this network in normal and aberrant, early hematopoiesis, we employed an in vitro embryonic stem cell differentiation system, which recapitulates mouse developmental hematopoiesis. Expression profiles of Hox, Pbx1, and Meis1 genes were quantified at distinct stages during the hematopoietic differentiation process and compared with the effects of expressing the leukemic oncogene Tel/PDGFRß. During normal differentiation the Hoxa cluster, Pbx1 and Meis1 predominated, with a marked reduction in the majority of Hox genes (27/39) and Meis1 occurring during hematopoietic commitment. Only the posterior Hoxa cluster genes (a9, a10, a11, and a13) maintained or increased expression at the hematopoietic colony stage. Cdx4, Meis1, and a subset of Hox genes, including a7 and a9, were differentially expressed after short-term oncogenic (Tel/PDGFRß) induction. Whereas Hoxa4-10, b1, b2, b4, and b9 were upregulated during oncogenic driven myelomonocytic differentiation. Heterodimers between Hoxa7/Hoxa9, Meis1, and Pbx have previously been implicated in regulating target genes involved in hematopoietic stem cell (HSC) expansion and leukemic progression. These results provide direct evidence that transcriptional flux through the Hox network occurs at very early stages during hematopoietic differentiation and validates embryonic stem cell models for gaining insights into the genetic regulation of normal and malignant hematopoiesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings. We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E-RoSH lines have similar gene expression profiles (r(2) = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi), SSEA-1(-) while ESCs are CD9(lo), SSEA-1(+). Isolation of CD9(hi), SSEA-1(-) cells that constituted 1%-10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2) = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions. By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cells of normal mammalian tissues are defined as nonspecialized cells that have two critical properties: (a) the ability to renew themselves through cell division and (b) the potency to differentiate into other cell types. Therefore, they play a crucial role in development and in tissue homeostasis during adult life. Being long-lived, they can be the targets of environmental carcinogens leading to the accumulation of consecutive genetic changes. Hence, the genome of stem cells must be exceptionally well protected, and several protective mechanisms have evolved to ensure the genetic integrity of the stem cell compartment in any given tissue. Ionizing radiation exposure can disrupt tissue homeostasis both through the induction of cell killing/depletion of radiosensitive stem cells, leading to loss of tissue functionality and by genotoxic damage, increasing overall risk of cancer. We will review the current knowledge about radiation effects in adult stem cells of specific normal tissues, including skin, breast, and brain, examine parallels, as well as differences with cancer stem cells, and discuss the relevance of stem cell effects to radiation risk and radiotherapy. STEM CELLS 2011;29:1315-1321

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To describe the ocular phenotype in patients with ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome (MIM#604292) and to determine the pathogenic basis of visual morbidity. Design: Retrospective case series. Participants: Nineteen families (23 patients) affected by EEC syndrome from the United Kingdom, Ireland, and Italy. Methods: General medical examination to fulfill the diagnostic criteria for EEC syndrome and determine the phenotypic severity. Mutational analysis of p63 was performed by polymerase chain reaction-based bidirectional Sanger sequencing. All patients with EEC syndrome underwent a complete ophthalmic examination and ocular surface assessment. Limbal stem cell deficiency (LSCD) was diagnosed clinically on the basis of corneal conjunctivalization and anatomy of the limbal palisades of Vogt. Impression cytology using immunofluorescent antibodies was performed in 1 individual. Histologic and immunohistochemical analyses were performed on a corneal button and corneal pannus from 2 EEC patients. Main Outcome Measures: The EEC syndrome phenotypic severity (EEC score), best-corrected Snellen visual acuity (decimal fraction), slit-lamp biomicroscopy, tear function index, tear breakup time, LSCD, p63 DNA sequence variants, impression cytology, and corneal histopathology. Results: Eleven heterozygous missense mutations in the DNA binding domain of p63 were identified in all patients with EEC syndrome. All patients had ocular involvement and the commonest was an anomaly of the meibomian glands and lacrimal drainage system defects. The major cause of visual morbidity was progressive LSCD, which was detected in 61% (14/23). Limbal stem cell deficiency was related to advancing age and caused a progressive keratopathy, resulting in a dense vascularized corneal pannus, and eventually leading to visual impairment. Histologic analysis and impression cytology confirmed LSCD. Conclusions: Heterozygous p63 mutations cause the EEC syndrome and result in visual impairment owing to progressive LSCD. There was no relationship of limbal stem cell failure with the severity of EEC syndrome, as classified by the EEC score, or the underlying molecular defect in p63. Financial Disclosure(s): The authors have no proprietary or commercial interest in any of the materials discussed in this article. © 2012 American Academy of Ophthalmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) have a central role in the regulation of gene expression. Here we investigated whether HDAC7 has an impact on embryonic stem (ES) cell differentiation into smooth muscle cells (SMCs). ES cells were seeded on collagen-IV-coated flasks and cultured in the absence of leukemia inhibitory factor in differentiation medium to induce SMC differentiation. Western blots and double-immunofluorescence staining demonstrated that HDAC7 has a parallel expression pattern with SMC marker genes. In ex vivo culture of embryonic cells from SM22-LacZ transgenic mice, overexpression of HDAC7 significantly increased beta-galactosidase-positive cell numbers and enzyme activity, indicating its crucial role in SMC differentiation during embryonic development. We found that HDAC7 undergoes alternative splicing during ES cell differentiation. Platelet-derived growth factor enhanced ES cell differentiation into SMCs through upregulation of HDAC7 splicing. Further experiments revealed that HDAC7 splicing induced SMC differentiation through modulation of the SRF-myocardin complex. These findings suggest that HDAC7 splicing is important for SMC differentiation and vessel formation in embryonic development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smooth muscle cell (SMC) differentiation is a critical process during cardiovascular formation and development, but the underlying molecular mechanism remains unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NADPH oxidase (Nox4) produces reactive oxygen species (ROS) that are important for vascular smooth muscle cell (SMC) behavior, but the potential impact of Nox4 in stem cell differentiation is unknown. When mouse embryonic stem (ES) cells were plated on collagen IV-coated dishes/flasks, a panel of SMC-specific genes was significantly and consistently upregulated. Nox4 expression was markedly correlated with such a gene induction as confirmed by real-time PCR, immunofluorescence, and Western blot analysis. Overexpression of Nox4 specifically resulted in increased SMC marker production, whereas knockdown of Nox4 induced a decrease. Furthermore, SMC-specific transcription factors, including serum response factor (SRF) and myocardin were activated by Nox4 gene expression. Moreover, Nox4 was demonstrated to drive SMC differentiation through generation of H(2)O(2). Confocal microscopy analysis indicates that SRF was translocated into the nucleus during SMC differentiation in which SRF was phosphorylated. Additionally, autosecreted transforming growth factor (TGF)-beta(1) activated Nox4 and promoted SMC differentiation. Interestingly, cell lines generated from stem cells by Nox4 transfection and G418 selection displayed a characteristic of mature SMCs, including expression of SMC markers and cells with contractile function. Thus we demonstrate for the first time that Nox4 is crucial for SMC differentiation from ES cells, and enforced Nox4 expression can maintain differentiation status and functional features of stem cell-derived SMCs, highlighting its impact on vessel formation in vivo and vascular tissue engineering in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reendothelialization involves endothelial progenitor cell (EPC) homing, proliferation, and differentiation, which may be influenced by fluid shear stress and local flow pattern. This study aims to elucidate the role of laminar flow on embryonic stem (ES) cell differentiation and the underlying mechanism. We demonstrated that laminar flow enhanced ES cell-derived progenitor cell proliferation and differentiation into endothelial cells (ECs). Laminar flow stabilized and activated histone deacetylase 3 (HDAC3) through the Flk-1-PI3K-Akt pathway, which in turn deacetylated p53, leading to p21 activation. A similar signal pathway was detected in vascular endothelial growth factor-induced EC differentiation. HDAC3 and p21 were detected in blood vessels during embryogenesis. Local transfer of ES cell-derived EPC incorporated into injured femoral artery and reduced neointima formation in a mouse model. These data suggest that shear stress is a key regulator for stem cell differentiation into EC, especially in EPC differentiation, which can be used for vascular repair, and that the Flk-1-PI3K-Akt-HDAC3-p53-p21 pathway is crucial in such a process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defects in renewal and repair of ocular surface as a result of limbal stem cell deficiency are now known to cause varying ocular, surface morbidity including persistent photophobia, repeated and persistent surface breakdown and overt conjunctivalisation of the cornea. Ocular conditions with abnormalities of ocular surface repair include pterygium, limbal tumours, aniridia, severe scarring following burns, cicatricial pemphigoid and Stevens-Johnson Syndrome, sequelae of mustard gas exposure and Herpes simplex epithelial disease, radiation keratopathy, contact lens induced keratopathy, neuroparalytic keratitis and drug toxicity. Restoring ocular health in these eyes has traditionally been frustrating. An understanding of these intricate cell renewal and maintenance processes has spurred the evolution in recent years of new treatment methods for several blinding diseases of the anterior segment; many more exciting modalities are in the offing. However, there is inadequate awareness among ophthalmologists about the current principles of management of ocular surface disorders. The purpose of this article is to help elucidate the important principles and current treatment methods relevant to ocular surface disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the relative benefits and to identify any adverse effects of surgical interventions for limbal stem cell deficiency (LSCD).

DESIGN: Systematic literature review.

METHODS: We searched the following electronic databases from January 1, 1989 through September 30, 2006: MEDLINE, EMBASE, Science citation index, BIOSIS, and the Cochrane Library. In addition, reference lists were scanned to identify any additional reports. The quality of published reports was assessed using standard methods. The main outcome measure was improvement in vision of at least two Snellen lines of best-corrected visual acuity (BCVA). Data on adverse outcomes also were collected.

RESULTS: Twenty-six studies met the inclusion criteria. There were no randomized controlled studies. All 26 studies were either prospective or retrospective case series. For bilateral severe LSCD, keratolimbal allograft was the most common intervention with systemic immunosuppression. Other interventions included eccentric penetrating keratolimbal allografts and cultivated autologous oral mucosal epithelial grafts. An improvement in BCVA of two lines or more was reported in 31% to 67% of eyes. For unilateral severe LSCD, the most common surgical intervention was contralateral conjunctival limbal autograft, with 35% to 88% of eyes gaining an improvement in BCVA of two lines or more. The only study evaluating partial LSCD showed an improvement in BCVA of two lines or more in 39% of eyes.

CONCLUSIONS: Studies to date have not provided strong evidence to guide clinical practice on which surgery is most beneficial to treat various types of LSCD. Standardized data collection in a multicenter LSCD register is suggested.