913 resultados para specimen shape effect
Resumo:
We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni50Mn34In16 alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric effect associated with the martensitic transition results in the unusual decrease of temperature by adiabatic magnetization. We also provide magnetization and specific heat data which enable to compare the measured temperature changes to the values indirectly computed from thermodynamic relationships. Good agreement is obtained for the conventional effect at the second-order paramagnetic-ferromagnetic phase transition. However, at the first-order structural transition the measured values at high fields are lower than the computed ones. Irreversible thermodynamics arguments are given to show that such a discrepancy is due to the irreversibility of the first-order martensitic transition.
Resumo:
Ferrofluids belonging to the series NixFe1 xFe2O4 were synthesised by two different procedures—one by standard co-precipitation techniques, the other by co-precipitation for synthesis of particles and dispersion aided by high-energy ball milling with a view to understand the effect of strain and size anisotropy on the magneto-optical properties of ferrofluids. The birefringence measurements were carried out using a standard ellipsometer. The birefringence signal obtained for chemically synthesised samples was satisfactorily fitted to the standard second Langevin function. The ball-milled ferrofluids showed a deviation and their birefringence was enhanced by an order. This large enhancement in the birefringence value cannot be attributed to the increase in grain size of the samples, considering that the grain sizes of sample synthesised by both modes are comparable; instead, it can be attributed to the lattice strain-induced shape anisotropy(oblation) arising from the high-energy ball-milling process. Thus magnetic-optical (MO) signals can be tuned by ball-milling process, which can find potential applications
Resumo:
We derive a universal model for atom pairs interacting with non-resonant light via the polarizability anisotropy, based on the long range properties of the scattering. The corresponding dynamics can be obtained using a nodal line technique to solve the asymptotic Schrödinger equation. It consists of imposing physical boundary conditions at long range and vanishing the wavefunction at a position separating the inner zone and the asymptotic region. We show that nodal lines which depend on the intensity of the non-resonant light can satisfactorily account for the effect of the polarizability at short range. The approach allows to determine the resonance structure, energy, width, channel mixing and hybridization even for narrow resonances.
Resumo:
We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.
Resumo:
Understanding how the human visual system recognizes objects is one of the key challenges in neuroscience. Inspired by a large body of physiological evidence (Felleman and Van Essen, 1991; Hubel and Wiesel, 1962; Livingstone and Hubel, 1988; Tso et al., 2001; Zeki, 1993), a general class of recognition models has emerged which is based on a hierarchical organization of visual processing, with succeeding stages being sensitive to image features of increasing complexity (Hummel and Biederman, 1992; Riesenhuber and Poggio, 1999; Selfridge, 1959). However, these models appear to be incompatible with some well-known psychophysical results. Prominent among these are experiments investigating recognition impairments caused by vertical inversion of images, especially those of faces. It has been reported that faces that differ "featurally" are much easier to distinguish when inverted than those that differ "configurally" (Freire et al., 2000; Le Grand et al., 2001; Mondloch et al., 2002) ??finding that is difficult to reconcile with the aforementioned models. Here we show that after controlling for subjects' expectations, there is no difference between "featurally" and "configurally" transformed faces in terms of inversion effect. This result reinforces the plausibility of simple hierarchical models of object representation and recognition in cortex.
Resumo:
In recent decades, many early-succession songbird species have experienced severe and widespread declines, which often are related to habitat destruction. Field borders create additional or enhance existing early-succession habitat on farmland. However, field border shape and the landscape context surrounding farms may influence the effectiveness of field borders in contributing to the stabilization or increase of early-succession bird populations. We examined the influence of linear and nonlinear field borders on farms in landscapes dominated by either agriculture or forests on nest success and Brown-headed Cowbird (Molothrus ater) brood parasitism of Indigo Bunting (Passerina cyanea) and Blue Grosbeak (Passerina caerulea) nests combined. Field border establishment did not affect nest survival probability and brood parasitism frequency of Indigo Bunting and Blue Grosbeak nests. Indigo Bunting/Blue Grosbeak nest success probability was more than twice as high in agriculture-dominated landscapes (39%) than in forested landscapes (17%), and brood parasitism frequency was high (33%) but did not differ between landscapes. Edges in agriculture-dominated landscapes can be higher-quality habitats for early-succession birds than edges in forest-dominated landscapes, but our field border treatments did not enhance nest success for these birds on farms in either landscape.
Resumo:
Matheron's usual variogram estimator can result in unreliable variograms when data are strongly asymmetric or skewed. Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. This paper examines the effects of underlying asymmetry on the variogram and on the accuracy of prediction, and the second one examines the effects arising from outliers. Standard geostatistical texts suggest ways of dealing with underlying asymmetry; however, this is based on informed intuition rather than detailed investigation. To determine whether the methods generally used to deal with underlying asymmetry are appropriate, the effects of different coefficients of skewness on the shape of the experimental variogram and on the model parameters were investigated. Simulated annealing was used to create normally distributed random fields of different size from variograms with different nugget:sill ratios. These data were then modified to give different degrees of asymmetry and the experimental variogram was computed in each case. The effects of standard data transformations on the form of the variogram were also investigated. Cross-validation was used to assess quantitatively the performance of the different variogram models for kriging. The results showed that the shape of the variogram was affected by the degree of asymmetry, and that the effect increased as the size of data set decreased. Transformations of the data were more effective in reducing the skewness coefficient in the larger sets of data. Cross-validation confirmed that variogram models from transformed data were more suitable for kriging than were those from the raw asymmetric data. The results of this study have implications for the 'standard best practice' in dealing with asymmetry in data for geostatistical analyses. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. The first paper of this series examined the effects of the former on the variogram and this paper examines the effects of asymmetry arising from outliers. Simulated annealing was used to create normally distributed random fields of different size that are realizations of known processes described by variograms with different nugget:sill ratios. These primary data sets were then contaminated with randomly located and spatially aggregated outliers from a secondary process to produce different degrees of asymmetry. Experimental variograms were computed from these data by Matheron's estimator and by three robust estimators. The effects of standard data transformations on the coefficient of skewness and on the variogram were also investigated. Cross-validation was used to assess the performance of models fitted to experimental variograms computed from a range of data contaminated by outliers for kriging. The results showed that where skewness was caused by outliers the variograms retained their general shape, but showed an increase in the nugget and sill variances and nugget:sill ratios. This effect was only slightly more for the smallest data set than for the two larger data sets and there was little difference between the results for the latter. Overall, the effect of size of data set was small for all analyses. The nugget:sill ratio showed a consistent decrease after transformation to both square roots and logarithms; the decrease was generally larger for the latter, however. Aggregated outliers had different effects on the variogram shape from those that were randomly located, and this also depended on whether they were aggregated near to the edge or the centre of the field. The results of cross-validation showed that the robust estimators and the removal of outliers were the most effective ways of dealing with outliers for variogram estimation and kriging. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Lipid deposits occur more frequently downstream of branch points than upstream in immature rabbit and human aortas but the opposite pattern is seen in mature vessels. These distributions correlate spatially with age-related patterns of aortic permeability, observed in rabbits, and may be determined by them. The mature but not the immature pattern of permeability is dependent on endogenous nitric oxide synthesis. Although the transport patterns have hitherto seemed robust, recent studies have given the upstream pattern in some mature rabbits but the downstream pattern in others. Here we show that transport in mature rabbits is significantly skewed to the downstream pattern in the afternoon compared with the morning (P < 0.05), and switches from a downstream to an upstream pattern at around 21 months in rabbits of the Murex strain, but at twice this age in Highgate rabbits (P < 0.001). The effect of time of day was not explained by changes in nitric oxide production, assessed from plasma levels of nitrate and nitrate, nor did it correlate with conduit artery tone, assessed from the shape of the peripheral pulse wave. The effect of strain could not be explained by variation in nitric oxide production nor by differences in wall structure. The effects of time of day and rabbit strain on permeability patterns explain recent discrepancies, provide a useful tool for investigating underlying mechanisms and may have implications for human disease.
Resumo:
Objective: The aims of these studies were (a) to investigate the relationship between attentional bias and eating disorders and (b) examine the impact of psychological treatment on attentional bias. Method: The first study compared performance on a pictorial dot probe of 82 female patients with clinical eating disorders and 44 healthy female controls. The second study compared the performance of 31 patients with eating disorder on the same task before and after receiving 20 weeks of standardized cognitive behavior therapy. Twenty-four patients with eating disorder served as wait-list controls. Results: With the exception of neutral shape stimuli, attentional biases for eating, shape, and weight stimuli were greater in the patient sample than the healthy controls. The second study found that attentional biases significantly reduced after active treatment only. Conclusion: Attentional biases may be an expression of the eating disorder. The question of whether such biases warrant specific intervention requires further investigation. (C) 2008 by Wiley Periodicals, Inc.
Resumo:
Selecting a stimulus as the target for a goal-directed movement involves inhibiting other competing possible responses. Inhibition has generally proved hard to study behaviorally, because it results in no measurable output. The effect of distractors on the shape of oculomotor and manual trajectories provide evidence of such inhibition. Individual saccades may deviate initially either towards, or away from, a competing distractor - the direction and extent of this deviation depends upon saccade latency, target predictability and the target to distractor separation. The experiment reported here used these effects to show how inhibition of distractor locations develops over time. Distractors could be presented at various distances from unpredictable and predictable targets in two separate experiments. The deviation of saccade trajectories was compared between trials with and without distractors. Inhibition was measured by saccade trajectory deviation. Inhibition was found to increase as the distractor distance from target decreased but was found to increase with saccade latency at all distractor distances (albeit to different peaks). Surprisingly, no differences were found between unpredictable and predictable targets perhaps because our saccade latencies were generally long (similar to 260-280 ms.). We conclude that oculomotor inhibition of saccades to possible target objects involves the same mechanisms for all distractor distances and target types. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.
Resumo:
Annealing of polycarbonate glasses at temperatures belowTg leads to an increase in yield stress and a drop in the impact strength. Although such behaviour may be related to the corresponding reduction in free volume upon annealing, variations in the wide-angle X-ray scattering curves indicate some modification to the local structure. The area of an intrachain peak at s ∼ 0.7 Å−1 is monitored with respect to annealing temperature and time. It is proposed that the variations may be described by an increasing level of interlocking or (nesting) between neighbouring chain segments, a process which is a natural consequence of the molecular shape of polycarbonate.
Resumo:
The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.
Resumo:
A discrete element model is used to study shear rupture of sea ice under convergent wind stresses. The model includes compressive, tensile, and shear rupture of viscous elastic joints connecting floes that move under the action of the wind stresses. The adopted shear rupture is governed by Coulomb’s criterion. The ice pack is a 400 km long square domain consisting of 4 km size floes. In the standard case with tensile strength 10 times smaller than the compressive strength, under uniaxial compression the failure regime is mainly shear rupture with the most probable scenario corresponding to that with the minimum failure work. The orientation of cracks delineating formed aggregates is bimodal with the peaks around the angles given by the wing crack theory determining diamond-shaped blocks. The ice block (floe aggregate) size decreases as the wind stress gradient increases since the elastic strain energy grows faster leading to a higher speed of crack propagation. As the tensile strength grows, shear rupture becomes harder to attain and compressive failure becomes equally important leading to elongation of blocks perpendicular to the compression direction and the blocks grow larger. In the standard case, as the wind stress confinement ratio increases the failure mode changes at a confinement ratio within 0.2–0.4, which corresponds to the analytical critical confinement ratio of 0.32. Below this value, the cracks are bimodal delineating diamond shape aggregates, while above this value failure becomes isotropic and is determined by small-scale stress anomalies due to irregularities in floe shape.