949 resultados para special-purpose functionalized conjugated polymers
Resumo:
The Jellybean Machine is a scalable MIMD concurrent processor consisting of special purpose RISC processors loosely coupled into a low latency network. I have developed an operating system to provide the supportive environment required to efficiently coordinate the collective power of the distributed processing elements. The system services are developed in detail, and may be of interest to other designers of fine grain, distributed memory processing networks.
Resumo:
Combining numerical techniques with ideas from symbolic computation and with methods incorporating knowledge of science and mathematics leads to a new category of intelligent computational tools for scientists and engineers. These tools autonomously prepare simulation experiments from high-level specifications of physical models. For computationally intensive experiments, they automatically design special-purpose numerical engines optimized to perform the necessary computations. They actively monitor numerical and physical experiments. They interpret experimental data and formulate numerical results in qualitative terms. They enable their human users to control computational experiments in terms of high-level behavioral descriptions.
Resumo:
Early and intermediate vision algorithms, such as smoothing and discontinuity detection, are often implemented on general-purpose serial, and more recently, parallel computers. Special-purpose hardware implementations of low-level vision algorithms may be needed to achieve real-time processing. This memo reviews and analyzes some hardware implementations of low-level vision algorithms. Two types of hardware implementations are considered: the digital signal processing chips of Ruetz (and Broderson) and the analog VLSI circuits of Carver Mead. The advantages and disadvantages of these two approaches for producing a general, real-time vision system are considered.
Resumo:
The Listener is an automated system that unintrusively performs knowledge acquisition from informal input. The Listener develops a coherent internal representation of a description from an initial set of disorganized, imprecise, incomplete, ambiguous, and possibly inconsistent statements. The Listener can produce a summary document from its internal representation to facilitate communication, review, and validation. A special purpose Listener, called the Requirements Apprentice (RA), has been implemented in the software requirements acquisition domain. Unlike most other requirements analysis tools, which start from a formal description language, the focus of the RA is on the transition between informal and formal specifications.
Resumo:
A computer program, named ADEPT (A Distinctly Empirical Prover of Theorems), has been written which proves theorems taken from the abstract theory of groups. Its operation is basically heuristic, incorporating many of the techniques of the human mathematician in a "natural" way. This program has proved almost 100 theorems, as well as serving as a vehicle for testing and evaluating special-purpose heuristics. A detailed description of the program is supplemented by accounts of its performance on a number of theorems, thus providing many insights into the particular problems inherent in the design of a procedure capable of proving a variety of theorems from this domain. Suggestions have been formulated for further efforts along these lines, and comparisons with related work previously reported in the literature have been made.
Resumo:
Planner is a formalism for proving theorems and manipulating models in a robot. The formalism is built out of a number of problem-solving primitives together with a hierarchical multiprocess backtrack control structure. Statements can be asserted and perhaps later withdrawn as the state of the world changes. Under BACKTRACK control structure, the hierarchy of activations of functions previously executed is maintained so that it is possible to revert to any previous state. Thus programs can easily manipulate elaborate hypothetical tentative states. In addition PLANNER uses multiprocessing so that there can be multiple loci of changes in state. Goals can be established and dismissed when they are satisfied. The deductive system of PLANNER is subordinate to the hierarchical control structure in order to maintain the desired degree of control. The use of a general-purpose matching language as the basis of the deductive system increases the flexibility of the system. Instead of explicitly naming procedures in calls, procedures can be invoked implicitly by patterns of what the procedure is supposed to accomplish. The language is being applied to solve problems faced by a robot, to write special purpose routines from goal oriented language, to express and prove properties of procedures, to abstract procedures from protocols of their actions, and as a semantic base for English.
Resumo:
This report describes a system which maintains canonical expressions for designators under a set of equalities. Substitution is used to maintain all knowledge in terms of these canonical expressions. A partial order on designators, termed the better-name relation, is used in the choice of canonical expressions. It is shown that with an appropriate better-name relation an important engineering reasoning technique, propagation of constraints, can be implemented as a special case of this substitution process. Special purpose algebraic simplification procedures are embedded such that they interact effectively with the equality system. An electrical circuit analysis system is developed which relies upon constraint propagation and algebraic simplification as primary reasoning techniques. The reasoning is guided by a better-name relation in which referentially transparent terms are preferred to referentially opaque ones. Multiple description of subcircuits are shown to interact strongly with the reasoning mechanism.
Resumo:
This paper addresses the problem of efficiently computing the motor torques required to drive a lower-pair kinematic chain (e.g., a typical manipulator arm in free motion, or a mechanical leg in the swing phase) given the desired trajectory; i.e., the Inverse Dynamics problem. It investigates the high degree of parallelism inherent in the computations, and presents two "mathematically exact" formulations especially suited to high-speed, highly parallel implementations using special-purpose hardware or VLSI devices. In principle, the formulations should permit the calculations to run at a speed bounded only by I/O. The first presented is a parallel version of the recent linear Newton-Euler recursive algorithm. The time cost is also linear in the number of joints, but the real-time coefficients are reduced by almost two orders of magnitude. The second formulation reports a new parallel algorithm which shows that it is possible to improve upon the linear time dependency. The real time required to perform the calculations increases only as the [log2] of the number of joints. Either formulation is susceptible to a systolic pipelined architecture in which complete sets of joint torques emerge at successive intervals of four floating-point operations. Hardware requirements necessary to support the algorithm are considered and found not to be excessive, and a VLSI implementation architecture is suggested. We indicate possible applications to incorporating dynamical considerations into trajectory planning, e.g. it may be possible to build an on-line trajectory optimizer.
Resumo:
As the commoditization of sensing, actuation and communication hardware increases, so does the potential for dynamically tasked sense and respond networked systems (i.e., Sensor Networks or SNs) to replace existing disjoint and inflexible special-purpose deployments (closed-circuit security video, anti-theft sensors, etc.). While various solutions have emerged to many individual SN-centric challenges (e.g., power management, communication protocols, role assignment), perhaps the largest remaining obstacle to widespread SN deployment is that those who wish to deploy, utilize, and maintain a programmable Sensor Network lack the programming and systems expertise to do so. The contributions of this thesis centers on the design, development and deployment of the SN Workbench (snBench). snBench embodies an accessible, modular programming platform coupled with a flexible and extensible run-time system that, together, support the entire life-cycle of distributed sensory services. As it is impossible to find a one-size-fits-all programming interface, this work advocates the use of tiered layers of abstraction that enable a variety of high-level, domain specific languages to be compiled to a common (thin-waist) tasking language; this common tasking language is statically verified and can be subsequently re-translated, if needed, for execution on a wide variety of hardware platforms. snBench provides: (1) a common sensory tasking language (Instruction Set Architecture) powerful enough to express complex SN services, yet simple enough to be executed by highly constrained resources with soft, real-time constraints, (2) a prototype high-level language (and corresponding compiler) to illustrate the utility of the common tasking language and the tiered programming approach in this domain, (3) an execution environment and a run-time support infrastructure that abstract a collection of heterogeneous resources into a single virtual Sensor Network, tasked via this common tasking language, and (4) novel formal methods (i.e., static analysis techniques) that verify safety properties and infer implicit resource constraints to facilitate resource allocation for new services. This thesis presents these components in detail, as well as two specific case-studies: the use of snBench to integrate physical and wireless network security, and the use of snBench as the foundation for semester-long student projects in a graduate-level Software Engineering course.
Resumo:
Here we survey the theory and applications of a family of methods (correlated electron-ion dynamics, or CEID) that can be applied to a diverse range of problems involving the non-adiabatic exchange of energy between electrons and nuclei. The simplest method, which is a paradigm for the others, is Ehrenfest Dynamics. This is applied to radiation damage in metals and the evolution of excited states in conjugated polymers. It is unable to reproduce the correct heating of nuclei by current carrying electrons, so we introduce a moment expansion that allows us to restore the spontaneous emission of phonons. Because of the widespread use of Non-Equilibrium Green's Functions for computing electric currents in nanoscale systems, we present a comparison of this formalism with that of CEID with open boundaries. When there is strong coupling between electrons and nuclei, the moment expansion does not converge. We thus conclude with a reworking of the CEID formalism that converges systematically and in a stable manner.
Resumo:
Public private partnerships (PPP) are an established model for most governments internationally to provide infrastructure-based services, using private finance. Typically the public authority will sign a contract with a special purpose vehicle (SPV), which, because of the holistic nature of PPP, in turn sub-contracts the finance, design, construction, maintenance and soft services to companies that are often related to its shareholders. Thus there is a considerable network of linked organisations that together procure and provide the PPP project. While there is an increasing body of research that examines these PPP projects, much of it is interview or case study based so that the evidence is drawn from a small number of interviews or cases in specific sectors. It also focuses on the public sector procurer and the private sector contractor in the network of organisations. Although it has been recognised that the perceptions of the financiers may vary from those of other key PPP players there is much less research that focuses on the financiers. In this paper we report the results of a postal questionnaire survey, administered to 109 providers of senior debt and equity, from which the response rate was just less than 40%. We supplement these findings with a small number of illustrative quotes from interviewees, where the cited quote represents a commonly held view. We used SPSS and Nvivo to analyse the data. The findings show that when assessing PPPs financiers perceive a very wide range of risks as important, and that it is important to them that many of these risks are either insured or allocated to sub-contractors. When considering participating in PPPs, financiers agree that working with familiar partners on familiar projects and in familiar sectors is important, which may raise barriers to entry and undermine competitive processes.
Resumo:
Quantum coherence between electron and ion dynamics, observed in organic semiconductors by means of ultrafast spectroscopy, is the object of recent theoretical and computational studies. To simulate this kind of quantum coherent dynamics, we have introduced in a previous article [L. Stella, M. Meister, A. J. Fisher, and A. P. Horsfield, J. Chem. Phys. 127, 214104 (2007)] an improved computational scheme based on Correlated Electron-Ion Dynamics (CEID). In this article, we provide a generalization of that scheme to model several ionic degrees of freedom and many-body electronic states. To illustrate the capability of this extended CEID, we study a model system which displays the electron-ion analog of the Rabi oscillations. Finally, we discuss convergence and scaling properties of the extended CEID along with its applicability to more realistic problems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3589165]
Resumo:
Hardware designers and engineers typically need to explore a multi-parametric design space in order to find the best configuration for their designs using simulations that can take weeks to months to complete. For example, designers of special purpose chips need to explore parameters such as the optimal bitwidth and data representation. This is the case for the development of complex algorithms such as Low-Density Parity-Check (LDPC) decoders used in modern communication systems. Currently, high-performance computing offers a wide set of acceleration options, that range from multicore CPUs to graphics processing units (GPUs) and FPGAs. Depending on the simulation requirements, the ideal architecture to use can vary. In this paper we propose a new design flow based on OpenCL, a unified multiplatform programming model, which accelerates LDPC decoding simulations, thereby significantly reducing architectural exploration and design time. OpenCL-based parallel kernels are used without modifications or code tuning on multicore CPUs, GPUs and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically converts OpenCL kernels to RTL for mapping the simulations into FPGAs. To the best of our knowledge, this is the first time that a single, unmodified OpenCL code is used to target those three different platforms. We show that, depending on the design parameters to be explored in the simulation, on the dimension and phase of the design, the GPU or the FPGA may suit different purposes more conveniently, providing different acceleration factors. For example, although simulations can typically execute more than 3x faster on FPGAs than on GPUs, the overhead of circuit synthesis often outweighs the benefits of FPGA-accelerated execution.
Resumo:
The cell-specific delivery of polynucleic acids (e.g., DNA, RNA), gene therapy, has the potential to treat various diseases. In this chapter we discuss the use of organic electronic materials as non-viral gene delivery vectors and the great potential for electrochemically triggered gene delivery. We highlight some examples in this chapter based on fullerenes (bucky balls and carbon nanotubes), graphenes and electroactive polymers, particularly those that include experiments in vivo.
Resumo:
The design cycle for complex special-purpose computing systems is extremely costly and time-consuming. It involves a multiparametric design space exploration for optimization, followed by design verification. Designers of special purpose VLSI implementations often need to explore parameters, such as optimal bitwidth and data representation, through time-consuming Monte Carlo simulations. A prominent example of this simulation-based exploration process is the design of decoders for error correcting systems, such as the Low-Density Parity-Check (LDPC) codes adopted by modern communication standards, which involves thousands of Monte Carlo runs for each design point. Currently, high-performance computing offers a wide set of acceleration options that range from multicore CPUs to Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs). The exploitation of diverse target architectures is typically associated with developing multiple code versions, often using distinct programming paradigms. In this context, we evaluate the concept of retargeting a single OpenCL program to multiple platforms, thereby significantly reducing design time. A single OpenCL-based parallel kernel is used without modifications or code tuning on multicore CPUs, GPUs, and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically converts OpenCL kernels to RTL in order to introduce FPGAs as a potential platform to efficiently execute simulations coded in OpenCL. We use LDPC decoding simulations as a case study. Experimental results were obtained by testing a variety of regular and irregular LDPC codes that range from short/medium (e.g., 8,000 bit) to long length (e.g., 64,800 bit) DVB-S2 codes. We observe that, depending on the design parameters to be simulated, on the dimension and phase of the design, the GPU or FPGA may suit different purposes more conveniently, thus providing different acceleration factors over conventional multicore CPUs.