964 resultados para soil nutrient


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioremediation strategies continue to be developed to mitigate the environmental impact of petroleum hydrocarbon contamination. This study investigated the ability of soil microbiota, adapted by prior exposure, to biodegrade petroleum. Soils from Barrow Is. (W. Australia), a class A nature reserve and home to Australia’s largest onshore oil field, were exposed to Barrow production oil (50 ml/kg soil) and incubated (25 °C) for successive phases of 61 and 100 days. Controls in which oil was not added at Phase I or II were concurrently studied and all treatments were amended with the same levels of additional nutrient and water to promote microbial activity. Prior exposure resulted in accelerated biodegradation of most, but not all, hydrocarbon constituents in the production oil. Molecular biodegradation parameters measured using gas chromatography–mass spectrometry (GC–MS) showed that several aromatic constituents were degraded more slowly with increased oil history. The unique structural response of the soil microbial community was reflected by the response of different phospholipid fatty acid (PLFA) sub-classes (e.g. branched saturated fatty acids of odd or even carbon number) measured using a ratio termed Barrow PLFA ratio (B-PLFAr). The corresponding values of a previously proposed hydrocarbon degrading alteration index showed a negative correlation with hydrocarbon exposure, highlighting the site specificity of PLFA-based ratios and microbial community dynamics. B-PLFAr values increased with each Phase I and II addition of production oil. The different hydrocarbon biodegradation rates and responses of PLFA subclasses to the Barrow production oil probably relate to the relative bioavailability of production oil hydrocarbons. These different effects suggest preferred structural and functional microbial responses to anticipated contaminants may potentially be engineered by controlled pre-exposure to the same or closely related substrates. The bioremediation of soils freshly contaminated with petroleum could benefit from the addition of exhaustively bioremediated soils rich in biota primed for the impacting hydrocarbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The repeated introduction of an organic resource to soil can result in its enhanced degradation. This phenomenon is of primary importance in agroecosystems, where the dynamics of repeated nutrient, pesticide, and herbicide amendment must be understood to achieve optimal yield. Although not yet investigated, the repeated introduction of cadaveric material is an important area of research in forensic science and cemetery planning. It is not currently understood what effects the repeated burial of cadaveric material has on cadaver decomposition or soil processes such as carbon mineralization. To address this gap in knowledge, we conducted a laboratory experiment using ovine (Ovis aries) skeletal muscle tissue (striated muscle used for locomotion) and three contrasting soils (brown earth, rendzina, podsol) from Great Britain. This experiment comprised two stages. In Stage I skeletal muscle tissue (150 g as 1.5 g cubes) was buried in sieved (4.6 mm) soil (10 kg dry weight) calibrated to 60% water holding capacity and allowed to decompose in the dark for 70 days at 22 °C. Control samples comprised soil without skeletal muscle tissue. In Stage II, soils were weighed (100 g dry weight at 60% WHC) into 1285 ml incubation microcosms. Half of the soils were designated for a second tissue amendment, which comprised the burial (2.5 cm) of 1.5 g cube of skeletal muscle tissue. The remaining half of the samples did not receive tissue. Thus, four treatments were used in each soil, reflecting all possible combinations of tissue burial (+) and control (−). Subsequent measures of tissue mass loss, carbon dioxide-carbon evolution, soil microbial biomass carbon, metabolic quotient and soil pH show that repeated burial of skeletal muscle tissue was associated with a significantly greater rate of decomposition in all soils. However, soil microbial biomass following repeated burial was either not significantly different (brown earth, podsol) or significantly less (rendzina) than new gravesoil. Based on these results, we conclude that enhanced decomposition of skeletal muscle tissue was most likely due to the proliferation of zymogenous soil microbes able to better use cadaveric material re-introduced to the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that roots can respond to patches of fertility; however, root proliferation is often too slow to exploit resources fully, and organic nutrient patches may be broken down and leached, immobilized or chemically fixed before they are invaded by the root system. The ability of fungal hyphae to exploit resource patches is far greater than that of roots due to their innate physiological and morphological plasticity, which allows comprehensive exploration and rapid colonization of resource patches in soils. The fungal symbionts of ectomycorrhizal plants excrete significant quantities of enzymes such as chitinases, phosphatases and proteases. These might allow the organic residue to be tapped directly for nutrients such as N and P. Pot experiments conducted with nutrient-stressed ectomycorrhizal and control willow plants showed that when high quality organic nutrient patches were added, they were colonized rapidly by the ectomycorrhizal mycelium. These established willows (0.5 m tall) were colonized by Hebeloma syrjense P. Karst. for 1 year prior to nutrient patch addition. Within days after patch addition, colour changes in the leaves of the mycorrhizal plants (reflecting improved nutrition) were apparent, and after I month the concentration of N and P in the foliage of mycorrhizal plants was significantly greater than that in non-mycorrhizal plants subject to the same nutrient addition. It seems likely that the mycorrhizal plants were able to compete effectively with the wider soil microbiota and tap directly into the high quality organic resource patch via their extra-radical mycelium. We hypothesize that ectomycorrhizal plants may reclaim some of the N and P invested in seed production by direct recycling from failed seeds in the soil. The rapid exploitation of similar discrete, transient, high-quality nutrient patches may have led to underestimations when determining the nutritional benefits of ectomycorrhizal colonization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a ‘pouch and wick’ HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the interaction of pathogens with plant roots is often complicated by the growth of plants in a soil substrate. A soil-free plant growth system (SPS) was developed that removes the need for a substrate while supporting the growth of seedlings in a nutrient rich, oxygenated environment. The model legume Lupinus angustifolius was used to compare the growth of seedlings within soil and the SPS. Seedlings grown under both conditions were similar in morphology, anatomy and health (measured by leaf chlorophyll abundance) and importantly there was little difference in root growth and development although straighter and fuller root systems were achieved in the SPS. The ease of access to the root system proved efficient for the analysis of root and pathogen interactions with no interference from soil or adhering particulate matter. Following inoculation of L. angustifolius roots with Phytophthora cinnamomi the host/pathogen interaction was easily observed and tissues sampled undamaged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimentation indicates that water and nutrients move through heterogeneous matrix flow pathways and that nutrients show little variation in concentration with fertilizer application rate after 2 months. However a scatter in concentrations independent of application rates after 4 and 7 months, indicates that external factors are affecting nutrient concentrations within the soil after this time period. Grassmere and Rutherglen were the sample sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed-species restoration tree plantings are being established increasingly, contributing to mitigate climate change and restore ecosystems. Including nitrogen (N)-fixing tree species may increase carbon (C) sequestration in mixed-species plantings, as these species may substantially increase soil C beneath them. We need to better understand the role of N-fixers in mixed-species plantings to potentially maximize soil C sequestration in these systems. Here, we present a field-based study that asked two specific questions related to the inclusion of N-fixing trees in a mixed-species planting: 1) Do non-N-fixing trees have access to N derived from fixation of atmospheric N2 by neighbouring N-fixing trees? 2) Do soil microbial communities differ under N-fixing trees and non-N-fixing trees in a mixed-species restoration planting? We sampled leaves from the crowns, and litter and soils beneath the crowns of two N-fixing and two non-N-fixing tree species that dominated the planting. Using the 15N natural abundance method, we found indications that fixed atmospheric N was utilized by the non-N-fixing trees, most likely through tight root connections or organic forms of N from the litter layer, rather than through the decomposition of N-fixers litter. While the two N-fixing tree species that were studied appeared to fix atmospheric N, they were substantially different in terms of C and N addition to the soil, as well as microbial community composition beneath them. This shows that the effect of N-fixing tree species on soil carbon sequestration is species-specific, cannot be generalized and requires planting trails to determine if there will be benefits to carbon sequestration. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compactação é um dos fatores mais agravantes para a qualidade do solo, porém o seu efeito na comunidade e atividade enzimática microbiana não tem sido suficientemente estudado. Seis níveis de compactação foram obtidos pela passagem de tratores com diferentes pesos em um Latossolo Vermelho, e a densidade final foi medida. Amostras de solo foram coletadas nas profundidades de 0-10 e 10-20 cm, após a colheita do milho. O efeito da compactação foi evidente em todos os parâmetros estudados, mas nem sempre foi significativo. A contagem das bactérias totais reduziu significativamente em 22-30 %, e a das nitrificantes, em 38-41 %, no solo com maior densidade em relação ao controle. Contudo, a população de fungos aumentou de 55 a 86 %, e a das bactérias desnitrificantes, de 49 a 53 %. A atividade da desidrogenase diminuiu de 20 a 34 %; a da urease, de 44 a 46 %; e a da fosfatase, de 26 a 28 %. O conteúdo de matéria orgânica e o pH do solo diminuíram na camada 0-0,10 em relação à de 0,10-0,20 m e influíram possivelmente na redução das contagens microbianas exceto das bactérias desnitrificantes, e na atividade das enzimas, menos a da urease. Esses resultados indicam que a compactação do solo teve influência na comunidade de microrganismos aeróbios e na sua atividade. Esse efeito pode alterar a ciclagem de nutrientes e diminuir a produção da planta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A soil sample was taken from the top 0-20cm at Jaboticabal county, São Paulo State, Brazil, air dried, sieved to 5mm, and placed into pots (2700g per pot). Sewage sludge was air-dried, ground to 2mm, and thoroughly mixed to the top 0-10cm soil of each pot, which were irrigated with distilled water in a total volume equivalent to the last 30years average rainfall in the region. Sorghum was sowed 120days after sewage sludge incorporation and then the irrigation was made according to the plants' requirement. When the plants were about 10 cm high, they were thinned to two per pot. Soil samples (0-10, 10-20, and 20-30 cm depth) were obtained immediately after the incorporation of sewage sludge and at 30, 60, 120, and 170 days after, air dried, sieved to 2 mm and analyzed for organic matter (OM), pH (0,01 mol L-1 CaCl2), extractable P (resin), potassium (K), calcium (Ca), and magnesium (Mg), amylase and cellulase activity. Sewage sludge increased soil OM, pH, extractable phosphorus (P), K. Ca. amylase and cellulase activity, especially at the rate 16 t ha(-1). Organic matter, extractable P, K, Ca, Mg. and amylase activity were higher in the top 0-10cm, while pH was higher in the 20-30cm layer. Amylase activity was not affected by sampling depth. Organic matter, pH, extractable P. K, Ca, and Mg decreased during the experimental period. Amylase activity decreased until sorghum was sowed and increased afterwards. Cellulase activity increased until 90 days after sewage sludge application and then decreased. Sewage sludge used in the experiment should already contain some amylase activity or a substance that was a soil enzyme activator and also a substance that was an inhibitor of soil cellulase inhibitor. Sonic of the plant nutrients contained in sewage sludge, mainly P, did not migrate down the soil column. an indication that sewage sludge should be incorporated into the soil to improve nutrient bioavailability. Sorghum roots increased amylase activity but did not affect cellulase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parent, L. E., Natale, W. and Ziadi, N. 2009. Compositional nutrient diagnosis of corn using the Mahalanobis distance as nutrient imbalance index. Can. J. Soil Sci. 89: 383-390. Compositional nutrient diagnosis (CND) provides a plant nutrient imbalance index (CND - r(2)) with assumed chi(2) distribution. The Mahalanobis distance D(2), which detects outliers in compositional data sets, also has a chi(2) distribution. The objective of this paper was to compare D(2) and CND - r(2) nutrient imbalance indexes in corn (Zea mays L.). We measured grain yield as well as N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn concentrations in the ear leaf at silk stage for 210 calibration sites in the St. Lawrence Lowlands [2300-2700 corn thermal units (CTU)] as well as 30 phosphorus (2300-2700 CTU; 10 sites) and 10 nitrogen (1900-2100 CTU; one site) replicated fertilizer treatments for validation. We derived CND norms as mean, standard deviation, and the inverse covariance matrix of centred log ratios (clr) for high yielding specimens (>= 9.0 Mg grain ha(-1) at 150 g H(2)O kg(-1) moisture content) in the 2300-2700 CTU zone. Using chi(2) = 17 (P < 0.05) with nine degrees of freedom (i.e., nine nutrients) as a rejection criterion for outliers and a yield threshold of 8.6 Mg ha(-1) after Cate-Nelson partitioning between low- and high-yielders in the P validation data set, D(2) misclassified two specimens compared with nine for CND -r(2). The D(2) classification was not significantly different from a chi(2) classification (P > 0.05), but the CND - r(2) classification differed significantly from chi(2) or D(2) (P < 0.001). A threshold value for nutrient imbalance could thus be derived probabilistically for conducting D(2) diagnosis, while the CND - r(2) nutrient imbalance threshold must be calibrated using fertilizer trials. In the proposed CND - D(2) procedure, D(2) is first computed to classify the specimen as possible outlier. Thereafter, nutrient indices are ranked in their order of limitation. The D(2) norms appeared less effective in the 1900-2100 CTU zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium (K) leaching is affected by soil texture and available K, among other factors. In this experiment, effects of soil texture and K availability on K distribution were studied in the presence of roots, with no excess water. Soils from two 6-year field experiments on a sandy clay loam and a clay soil fertilized yearly with 0, 60, 120, and 180 kg ha-1 of K2O were accommodated in pots that received 90 kg ha-1 of K2O. Soybean was grown up to its full bloom (R2). Under field conditions, K leaching below the arable layer increased with K rates, but the effect was less noticeable in the clay soil. Potassium leaching in a sandy clay loam soil was related to soil K contents from prior fertilizations. With no excess water, in the presence of soybean roots, K distribution in the profile was significant in the lighter textured soil but was not apparent on the heavier textured soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cation mobility in acidic soils with low organic-matter contents depends not only on sorption intensity but also on the solubility of the species present in soil solution. In general, the following leaching gradient is observed: potassium (K+) magnesium (Mg2+) calcium (Ca2+) aluminum (Al3+). To minimize nutrient losses and ameliorate the subsoil, soil solution must be changed, favoring higher mobility of M2+ (metal ions) forms. This would be theoretically possible if plant residues were kept on the soil surface. An experiment was conducted in pots containing a Distroferric Red Latosol, with soil solution extractors installed at two depths. Pearl millet, black oat, and oilseed radish residues were laid on the soil surface, and nitrogen (as ammonium nitrate) was applied at rates ranging from 0 to 150mgkg-1. Corn was grown for 52 days. Except for K+ and ammonium (NH4 +), nitrogen rates and plant residues had little effect upon the concentrations and forms of the elements in the soil solution. Presence of cover crop residues on soil surface decreased the effect of nitrogen fertilizer on Ca leaching. More than 90% of the Ca2+, Mg2+, and K+ were found as free ions. The Al3+ was almost totally complexed as Al(OH3)0. Nitrogen application increased the concentrations of almost all the ions in soil solution, including Al3+, although there was no modification in the leaching gradient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations of four tree species occurring in both planting mixtures were compared between a legume-dominated, species-poor direct seeding mixture of early-successional species ("legume mixture"), and a species-diverse, legume-poor mixture of all successional groups ("diverse mixture"). After 7 years, the legume mixture had 6-fold higher abundance of N(2)-fixing trees, 177% higher total tree basal area, 22% lower litter C/N, six-fold higher in situ soil resin-nitrate, and 40% lower in situ soil resin-P, compared to the diverse mixture. In the legume mixture, non-N(2)-fixing legume Schizolobium parahyba (Fabaceae-Caesalpinioideae) had significantly lower proportional N resorption, and both naturally regenerating non-legume trees had significantly higher leaf N concentrations, and higher proportional P resorption, than in the diverse mixture. This demonstrate forms of plastic adjustment in all three non-N(2)-fixing species to diverged nutrient relations between mixtures. By contrast, leaf nutrient relations in N(2)-fixing Enterolobium contortisiliquum (Fabaceae-Mimosoideae) did not respond to planting mixtures. Rapid N accumulation in the legume mixture caused excess soil nitrification over nitrate immobilization and tighter P recycling compared with the diverse mixture. The legume mixture succeeded in accelerating tree growth and canopy closure, but may imply periods of N losses and possibly P limitation. Incorporation of species with efficient nitrate uptake and P mobilization from resistant soil pools offers potential to optimize these tradeoffs.