890 resultados para slow atomic beam
Resumo:
We study the process of photodissociation of a molecular Bose-Einstein condensate as a potential source of strongly correlated twin atomic beams. We show that the two beams can possess nearly perfect quantum squeezing in their relative numbers.
Resumo:
In this paper. we present the results of quantum dynamical simulations of the S (D-1) + H-2 insertion reaction on a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). State-to-state reaction probabilities. product state distributions, and initial-state resolved cumulative reaction probabilities from a given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within a single Lanczos subspace. Integral reaction cross sections are then estimated by J-shifting method and compared with the results from molecular beam experiment and QCT calculations.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
A 20kg, 10-month-old male Kelpie developed a rapid onset of profound paresis progressing to flaccid paralysis and dyspnoea, followed by death about 36 hours after chewing on a partly discharged anti-bloat capsule from a dead cow. Intoxication by monensin in the capsule was considered the cause of death. No Lodes holocyclus were found on the dog. Evidence of muscle damage was seen in clinical biochemistry assays of plasma, but consent for necropsy was not obtained. The median lethal dose for Beagle dogs of the material contained in anti-bloat capsules is 0.5-1.0g. As this represents a serious toxicity risk if dogs chew these devises, the manufacturer includes a warning on potential dog toxicity in product literature.
Resumo:
A glasshouse study was undertaken to determine if the zeolite mineral clinoptilolite from an Australian deposit in combination with rock phosphate (RP) could significantly enhance the uptake of P by sunflowers. The zeolite/RP combination was intended to act as an exchange-fertiliser, with Ca2+ exchanging onto the zeolite in response to plant uptake of nutrient cations (NH4+ or K) enhancing the dissolution of the RP. A reactive RP (Sechura) and a relatively non-reactive RP (Duchess) were examined. Zeolite was used in Ca2+-, K+- and NH4+-saturated forms at ratios of 3.5:1 and 7:1 with RP; Ca2+-zeolite was considered the control, with exchange-induced dissolution possible from K+-and NH4+-zeolite, The zeolite/RP mixture was applied as a vertical band adjacent to the sunflower seedling. In addition, N was supplied as urea in an effort to determine if RP dissolution resulted from H+ release by nitrification. Phosphorus supply from the zeolite/RP system was compared with an available P source (KH2PO4). The experiment clearly demonstrated greatly enhanced plant uptake of P from RP when applied in combination with NH4-zeolite, though the P uptake was lower than that from the soluble P source. The zeolite/RP interaction was much more effective with the reactive R-P than the non-reactive material, Within the NH4+-zeolite/RP band, root proliferation was greatly increased, as would be expected in an exchange-fertiliser system. The K+-zeolite system did not produce a significantly greater yield than the Ca2+-zeolite control, probably because adequate K+ supply from the basal application reduced uptake within the zeolite/RP band, thus reducing the extent of exchange-induced dissolution. Nevertheless, increased root proliferation within the band was observed, implying that exchange-induced dissolution may also be possible from this system. The zeolite/RP system offers the considerable advantage of P release in response to plant demand and is unique in this regard. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.
Resumo:
A barracuda implicated in ciguatera fish poisoning in Guadeloupe was estimated to have an overall flesh toxicity of 15 MUg/g using mouse bioassay. A lipid soluble extract was separated into two toxic fractions, FrA and FrB, on a LH20 Sephadex column eluted with dichloromethane/methanol (1:1). When intraperitoneal injected into mice, FrA provoked symptoms characteristic of slow-acting ciguatoxins, whereas FrB produced symptoms indicative of fast-acting toxins (FAT). High performance liquid chromatography/mass spectrometry/radio-ligand binding (HPLC/MS/RLB) analysis confirmed the two fractions were distinct, because only a weak overlap of some compounds was observed. HPLC/MS/RLB analysis revealed C-CTX-1 as the potent toxin present in FrA, and two coeluting active compounds at m/z 809.43 and 857.42 in FrB, all displaying the characteristic pattern of ion formation for hydroxy-polyethers. Other C-CTX congeners and putative hydroxy-polyether-like compounds were detected in both fractions, however, the RLB found them inactive. C-CTX-1 accounted for >90% of total toxicity in this barracuda and was confirmed to be a competitive inhibitor of brevetoxin binding to voltage-sensitive sodium channels (VSSCs) with a potency two-times lower than P-CTX-1. However, FAT active on VSSCs and
Resumo:
We investigate nonclassical Stokes-operator variances in continuous-wave polarization-squeezed laser light generated from one and two optical parametric amplifiers. A general expression of how Stokes-operator variances decompose into two-mode quadrature operator variances is given. Stokes parameter variance spectra for four different polarization-squeezed states have been measured and compared with a coherent state. Our measurement results are visualized by three-dimensional Stokes-operator noise volumes mapped on the quantum Poincare sphere. We quantitatively compare the channel capacity of the different continuous-variable polarization states for communication protocols. It is shown that squeezed polarization states provide 33% higher channel capacities than the optimum coherent beam protocol.
Resumo:
The effect of electron beam radiation on a perfluoroalkoxy (PFA) resin was examined using solid-state high-speed magic angle spinning F-19 NMR spectroscopy and FT-IR spectroscopy. Samples were prepared for analysis by subjecting them to electron beam radiation in the dose range 0.5-2.0 MGy at 633 K, which is above the crystalline melting temperature. The new structures were identified and include new saturated chain ends, short and long branches, unsaturated groups, and cross-links. The radiation chemical yield (G value) of new long branch points was greater than the G value of new chain ends, suggesting that cross-linking is the net radiolytic process. This conclusion was supported by an observed decrease in the crystallinity and an increase in the optical clarity of the polymer.
Resumo:
Slow-release and organic fertilizers are promising alternatives to conventional fertilizers, as both reduce losses by leaching, volatilization and problems of toxicity and/or salinity to plants. The objective of this work was to evaluate the effect of different rates of the organic fertilizer Humato-Macota® compared with the slow-release fertilizer Osmocote® on the growth and nitrogen content in the dry matter of Rangpur lime. A field experiment was conducted in a factorial completely randomized design with an additional treatment (4 x 4 +1). The first factor consisted of four HumatoMacota® rates (0, 1, 2, and 3%) applied to the substrate; the second factor consisted of the same Humato-Macota® concentrations, but applied as fortnightly foliar sprays; the additional treatment consisted of application of 5 kgm-3 Osmocote® 18-05-09. Means of all growth characteristics (plant height, total dry matter, root/shoot ratio and leaf area) and the potential quantum yield of photosystem II (Fv/Fm) were higher when plants were fertilized with the slow-release fertilizer. The organic fertilizer applied alone did not meet the N requirement of Rangpur lime.
Resumo:
n this paper we make an exhaustive study of the fourth order linear operator u((4)) + M u coupled with the clamped beam conditions u(0) = u(1) = u'(0) = u'(1) = 0. We obtain the exact values on the real parameter M for which this operator satisfies an anti-maximum principle. Such a property is equivalent to the fact that the related Green's function is nonnegative in [0, 1] x [0, 1]. When M < 0 we obtain the best estimate by means of the spectral theory and for M > 0 we attain the optimal value by studying the oscillation properties of the solutions of the homogeneous equation u((4)) + M u = 0. By using the method of lower and upper solutions we deduce the existence of solutions for nonlinear problems coupled with this boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Mestrado em Radioterapia.