917 resultados para simultaneous shape and topology optimisation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre. One of the LPGs is sensitive to both SRI and temperature changes whilst the second is SRI-insensitive but shows spectral shift with temperature changes. In addition, we show that a resonance peak of the SRI-insensitive LPG can be designed to appear in the EDFA wavelength region with potential use for gain flattening applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE - To compare posterior vitreous chamber shape in myopia to that in emmetropia. METHODS - Both eyes of 55 adult subjects were studied, 27 with emmetropia (MSE =-0.55; <+0.75D; mean +0.09 ±0.36D) and 28 with myopia (MSE -5.87 ±2.31D). Cycloplegic refraction was measured with a Shin Nippon autorefractor and anterior chamber depth and axial length with a Zeiss IOLMaster. Posterior vitreous chamber shapes were determined from T2-weighted MRI (3-Tesla) using procedures previously reported by our laboratory. 3-D surface model coordinates were assigned to nasal, temporal, superior and inferior quadrants and plotted in 2-D to illustrate the composite shape of respective quadrants posterior to the second nodal point. Spherical analogues of chamber shape were constructed to compare relative sphericity between refractive groups and quadrants. RESULTS - Differences in shape occurred in the region posterior to points of maximum globe width and were thus in general accord with an equatorial model of myopic expansion. Shape in emmetropia is categorised distinctly as that of an oblate ellipse and in myopia as an oblate ellipse of significantly less degree such that it approximates to a sphere. There was concordance between shape and retinotopic projection of respective quadrants into right, left, superior and inferior visual fields. CONCLUSIONS - The transition in shape from oblate ellipse to sphere with axial elongation supports the hypothesis that myopia may be a consequence of equatorial restriction associated with biomechanical anomalies of the ciliary apparatus. The synchronisation of quadrant shapes with retinotopic projection suggests that binocular growth is coordinated by processes that operate beyond the optic chiasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long-period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre is presented. One of the LPGs is sensitive to both SRI and temperature, whilst the second is sensitive to temperature only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a compact scheme for simultaneous temperature and surrounding refractive index (SRI) measurement using two long period gratings (LPGs) of different periods inscribed side-by-side in a single piece of a double-cladding fibre. One of the LPGs is sensitive to both SRI and temperature changes whilst the second is SRI-insensitive but shows spectral shift with temperature changes. In addition, we show that a resonance peak of the SRI-insensitive LPG can be designed to appear in the EDFA wavelength region with potential use for gain flattening applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coupling of mechanical stress fields in polymers to covalent chemistry (polymer mechanochemistry) has provided access to previously unattainable chemical reactions and polymer transformations. In the bulk, mechanochemical activation has been used as the basis for new classes of stress-responsive polymers that demonstrate stress/strain sensing, shear-induced intermolecular reactivity for molecular level remodeling and self-strengthening, and the release of acids and other small molecules that are potentially capable of triggering further chemical response. The potential utility of polymer mechanochemistry in functional materials is limited, however, by the fact that to date, all reported covalent activation in the bulk occurs in concert with plastic yield and deformation, so that the structure of the activated object is vastly different from its nascent form. Mechanochemically activated materials have thus been limited to “single use” demonstrations, rather than as multi-functional materials for structural and/or device applications. Here, we report that filled polydimethylsiloxane (PDMS) elastomers provide a robust elastic substrate into which mechanophores can be embedded and activated under conditions from which the sample regains its original shape and properties. Fabrication is straightforward and easily accessible, providing access for the first time to objects and devices that either release or reversibly activate chemical functionality over hundreds of loading cycles.

While the mechanically accelerated ring-opening reaction of spiropyran to merocyanine and associated color change provides a useful method by which to image the molecular scale stress/strain distribution within a polymer, the magnitude of the forces necessary for activation had yet to be quantified. Here, we report single molecule force spectroscopy studies of two spiropyran isomers. Ring opening on the timescale of tens of milliseconds is found to require forces of ~240 pN, well below that of previously characterized covalent mechanophores. The lower threshold force is a combination of a low force-free activation energy and the fact that the change in rate with force (activation length) of each isomer is greater than that inferred in other systems. Importantly, quantifying the magnitude of forces required to activate individual spiropyran-based force-probes enables the probe behave as a “scout” of molecular forces in materials; the observed behavior of which can be extrapolated to predict the reactivity of potential mechanophores within a given material and deformation.

We subsequently translated the design platform to existing dynamic soft technologies to fabricate the first mechanochemically responsive devices; first, by remotely inducing dielectric patterning of an elastic substrate to produce assorted fluorescent patterns in concert with topological changes; and second, by adopting a soft robotic platform to produce a color change from the strains inherent to pneumatically actuated robotic motion. Shown herein, covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation into value-added, constructive covalent chemical responses. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional actuating device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the actuator in a way that might also be coupled to feedback loops that allow autonomous, self-regulation of activity.

In the future, both the specific material and the general approach should be useful in enriching the responsive functionality of soft elastomeric materials and devices. We anticipate the development of new mechanophores that, like the materials, are reversibly and repeatedly activated, expanding the capabilities of soft, active devices and further permitting dynamic control over chemical reactivity that is otherwise inaccessible, each in response to a single remote signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization is the critical process used by pharmaceutical industries to achieve the desired size, size distribution, shape and polymorphism of a product material. Control of these properties presents a major challenge since they influence considerably downstream processing factors. Experimental work aimed at finding ways to control the crystal shape of Lacosamide, an active pharmaceutical ingredient developed by UCB Pharma, during crystallization was carried out. It was found that the crystal lattice displayed a very strong unidirectional double hydrogen bonding, which was at the origin of the needle shape of the Lacosamide crystals. Two main strategies were followed to hinder the hydrogen bonding and compete with the addition of a Lacosamide molecule along the crystal length axis: changing the crystallization medium or weakening the hydrogen bonding. Various solvents were tested to check whether the solvent used to crystallize Lacosamide had an influence on the final crystal shape. Solvent molecules seemed to slow down the growth in the length axis by hindering the unidirectional hydrogen bonding of Lacosamide crystals, but not enough to promote the crystal growth in the width axis. Additives were also tested. Certain additives have shown to compete in a more efficient way than solvent molecules with the hydrogen bonding of Lacosamide. The additive effect has also shown to be compatible with the solvent effect. In parallel, hydrogen atoms in Lacosamide were changed into deuterium atoms in order to weaken the hydrogen bonds strength. Weakening the hydrogen bonds of Lacosamide allowed to let the crystal grow in the width axis. Deuteration was found to be combinable with solvent effect while being in competition with the additive effect. The Lacosamide molecule was eventually deemed an absolute needle by the terms of Lovette and Doherty. The results of this dissertation are aimed at contributing to this classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The particle size, shape and distribution of a range of rotational moulding polyethylenes (PEs) ground to powder was investigated using a novel visual data acquisition and analysis system (TP Picture®), developed by Total Petrochemicals. Differences in the individual particle shape factors of the powder samples were observed and correlations with the grinding conditions were determined. When heated, the bubble dissolution behaviour of the same powders was investigated and the shape factor correlated with densification rate, bubble size and bubble distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Volvulus of transverse colon is rare when compared to cecal and sigmoid volvulus. Cases involving simultaneous volvulus of the transverse colon and another colonic segment are extremely rare. Case report. We report a rare case of simultaneous sigmoid and transverse colon volvulus in a 82-year-old Caucasian female Conclusion. Volvulus is a well recognized cause of large bowel obstruction. The development of transverse and sigmoid volvulus in the same patient is extremely rare. Though rare this possibility must always be considered in the differential diagnosis, when dealing with recurrent intermittent abdominal pain or acute intestinal obstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes a generic visual perception architecture for robotic clothes perception and manipulation. This proposed architecture is fully integrated with a stereo vision system and a dual-arm robot and is able to perform a number of autonomous laundering tasks. Clothes perception and manipulation is a novel research topic in robotics and has experienced rapid development in recent years. Compared to the task of perceiving and manipulating rigid objects, clothes perception and manipulation poses a greater challenge. This can be attributed to two reasons: firstly, deformable clothing requires precise (high-acuity) visual perception and dexterous manipulation; secondly, as clothing approximates a non-rigid 2-manifold in 3-space, that can adopt a quasi-infinite configuration space, the potential variability in the appearance of clothing items makes them difficult to understand, identify uniquely, and interact with by machine. From an applications perspective, and as part of EU CloPeMa project, the integrated visual perception architecture refines a pre-existing clothing manipulation pipeline by completing pre-wash clothes (category) sorting (using single-shot or interactive perception for garment categorisation and manipulation) and post-wash dual-arm flattening. To the best of the author’s knowledge, as investigated in this thesis, the autonomous clothing perception and manipulation solutions presented here were first proposed and reported by the author. All of the reported robot demonstrations in this work follow a perception-manipulation method- ology where visual and tactile feedback (in the form of surface wrinkledness captured by the high accuracy depth sensor i.e. CloPeMa stereo head or the predictive confidence modelled by Gaussian Processing) serve as the halting criteria in the flattening and sorting tasks, respectively. From scientific perspective, the proposed visual perception architecture addresses the above challenges by parsing and grouping 3D clothing configurations hierarchically from low-level curvatures, through mid-level surface shape representations (providing topological descriptions and 3D texture representations), to high-level semantic structures and statistical descriptions. A range of visual features such as Shape Index, Surface Topologies Analysis and Local Binary Patterns have been adapted within this work to parse clothing surfaces and textures and several novel features have been devised, including B-Spline Patches with Locality-Constrained Linear coding, and Topology Spatial Distance to describe and quantify generic landmarks (wrinkles and folds). The essence of this proposed architecture comprises 3D generic surface parsing and interpretation, which is critical to underpinning a number of laundering tasks and has the potential to be extended to other rigid and non-rigid object perception and manipulation tasks. The experimental results presented in this thesis demonstrate that: firstly, the proposed grasp- ing approach achieves on-average 84.7% accuracy; secondly, the proposed flattening approach is able to flatten towels, t-shirts and pants (shorts) within 9 iterations on-average; thirdly, the proposed clothes recognition pipeline can recognise clothes categories from highly wrinkled configurations and advances the state-of-the-art by 36% in terms of classification accuracy, achieving an 83.2% true-positive classification rate when discriminating between five categories of clothes; finally the Gaussian Process based interactive perception approach exhibits a substantial improvement over single-shot perception. Accordingly, this thesis has advanced the state-of-the-art of robot clothes perception and manipulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 18: Optimization in Collaborative Networks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cranial base, composed of the midline and lateral basicranium, is a structurally important region of the skull associated with several key traits, which has been extensively studied in anthropology and primatology. In particular, most studies have focused on the association between midline cranial base flexion and relative brain size, or encephalization. However, variation in lateral basicranial morphology has been studied less thoroughly. Platyrrhines are a group of primates that experienced a major evolutionary radiation accompanied by extensive morphological diversification in Central and South America over a large temporal scale. Previous studies have also suggested that they underwent several evolutionarily independent processes of encephalization. Given these characteristics, platyrrhines present an excellent opportunity to study, on a large phylogenetic scale, the morphological correlates of primate diversification in brain size. In this study we explore the pattern of variation in basicranial morphology and its relationship with phylogenetic branching and with encephalization in platyrrhines. We quantify variation in the 3D shape of the midline and lateral basicranium and endocranial volumes in a large sample of platyrrhine species, employing high-resolution CT-scans and geometric morphometric techniques. We investigate the relationship between basicranial shape and encephalization using phylogenetic regression methods and calculate a measure of phylogenetic signal in the datasets. The results showed that phylogenetic structure is the most important dimension for understanding platyrrhine cranial base diversification; only Aotus species do not show concordance with our molecular phylogeny. Encephalization was only correlated with midline basicranial flexion, and species that exhibit convergence in their relative brain size do not display convergence in lateral basicranial shape. The evolution of basicranial variation in primates is probably more complex than previously believed, and understanding it will require further studies exploring the complex interactions between encephalization, brain shape, cranial base morphology, and ecological dimensions acting along the species divergence process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis.