988 resultados para silty clay soil


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil structure transformation from ferralic to nitic horizons was studied in a toposequence on quaternary red clayey sediments and diabase in Piracicaba (SP), Brazil. Morphological and micromorphological studies, image analysis, soil water characteristic curves and monitoring of (total) soil water potential head were used. The presence of polyconcave vughs, clayskins and planar voids shows that the vertical and lateral transition and structural transformation from ferralic to nitic horizons is given by the coalescence of the microaggregates, probably due to tensions created in a drier period in the past. Changes to a more humid climate with a defined dry season and alternate drying and wetting cycles resulted in the fissuration of the previously coalesced material, forming polyhedral aggregates and microaggregates. Simultaneously, clay illuviation filled the voids and together with the compacting action of the biological activity of these soils contributed to the coalescence of microaggregates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macroporosity is often used in the determination of soil compaction. Reduced macroporosity can lead to poor drainage, low root aeration and soil degradation. The aim of this study was to develop and test different models to estimate macro and microporosity efficiently, using multiple regression. Ten soils were selected within a large range of textures: sand (Sa) 0.07-0.84; silt 0.03-0.24; clay 0.13-0.78 kg kg-1 and subjected to three compaction levels (three bulk densities, BD). Two models with similar accuracy were selected, with a mean error of about 0.02 m³ m-3 (2 %). The model y = a + b.BD + c.Sa, named model 2, was selected for its simplicity to estimate Macro (Ma), Micro (Mi) or total porosity (TP): Ma = 0.693 - 0.465 BD + 0.212 Sa; Mi = 0.337 + 0.120 BD - 0.294 Sa; TP = 1.030 - 0.345 BD 0.082 Sa; porosity values were expressed in m³ m-3; BD in kg dm-3; and Sa in kg kg-1. The model was tested with 76 datum set of several other authors. An error of about 0.04 m³ m-3 (4 %) was observed. Simulations of variations in BD as a function of Sa are presented for Ma = 0 and Ma = 0.10 (10 %). The macroporosity equation was remodeled to obtain other compaction indexes: a) to simulate maximum bulk density (MBD) as a function of Sa (Equation 11), in agreement with literature data; b) to simulate relative bulk density (RBD) as a function of BD and Sa (Equation 13); c) another model to simulate RBD as a function of Ma and Sa (Equation 16), confirming the independence of this variable in relation to Sa for a fixed value of macroporosity and, also, proving the hypothesis of Hakansson & Lipiec that RBD = 0.87 corresponds approximately to 10 % macroporosity (Ma = 0.10 m³ m-3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR), and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd) under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC) were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR). The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil chronofunctions are an alternative for the quantification of soil-forming processes and underlie the modeling of soil genesis. To establish soil chronofunctions of a Heilu soil profile on Loess in Luochuan, selected soil properties and the 14C ages in the Holocene were studied. Linear, logarithmic, and third-order polynomial functions were selected to fit the relationships between soil properties and ages. The results indicated that third-order polynomial function fit best for the relationships between clay (< 0.002 mm), silt (0.002-0.02 mm), sand (0.02-2 mm) and soil ages, and a trend of an Ah horizon ocurrence in the profile. The logarithmic function indicated mainly variations of soil organic carbon and pH with time (soil age). The variation in CaCO3 content, Mn/Zr, Fe/Zr, K/Zr, Mg/Zr, Ca/Zr, P/Zr, and Na/Zr ratios with soil age were best described by three-order polynomial functions, in which the trend line showed migration of CaCO3 and some elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information on the spatial structure of soil physical and structural properties is needed to evaluate the soil quality. The purpose of this study was to investigate the spatial behavior of preconsolidation pressure and soil moisture in six transects, three selected along and three across coffee rows, at three different sites under different tillage management systems. The study was carried out on a farm, in Patrocinio, state of Minas Gerais, in the Southeast of Brazil (18 º 59 ' 15 '' S; 46 º 56 ' 47 '' W; 934 m asl). The soil type is a typic dystrophic Red Latosol (Acrustox) and consists of 780 g kg-1 clay; 110 g kg-1 silt and 110 g kg-1 sand, with an average slope of 3 %. Undisturbed soil cores were sampled at a depth of 0.10-0.13 m, at three different points within the coffee plantation: (a) from under the wheel track, where equipment used in farm operations passes; (b) in - between tracks and (c) under the coffee canopy. Six linear transects were established in the experimental area: three transects along and three across the coffee rows. This way, 161 samples were collected in the transect across the coffee rows, from the three locations, while 117 samples were collected in the direction along the row. The shortest sampling distance in the transect across the row was 4 m, and 0.5 m for the transect along the row. No clear patterns of the preconsolidation pressure values were observed in the 200 m transect. The results of the semivariograms for both variables indicated a high nugget value and short range for the studied parameters of all transects. A cyclic pattern of the parameters was observed for the across-rows transect. An inverse relationship between preconsolidation pressure and soil moisture was clearly observed in the samples from under the track, in both directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the soil physical properties, including the clay content, is of utmost importance for agriculture. The behavior of apparently similar soils can differ in intrinsic characteristics determined by different formation processes and nature of the parent material. The purpose of this study was to assess the efficacy of separate or combined pre-treatments, dispersion methods and chemical dispersant agents to determine clay in some soil classes, selected according to their mineralogy. Two Brazilian Oxisols, two Alfisols and one Mollisol with contrasting mineralogy were selected. Different treatments were applied: chemical substances as dispersants (lithium hydroxide, sodium hydroxide, and hexametaphosphate); pre-treatment with dithionite, ammonium oxalate, and hydrogen peroxide to eliminate organic matter; and coarse sand as abrasive and ultrasound, to test their mechanical action. The conclusion was drawn that different treatments must be applied to determine clay, in view of the soil mineralogy. Lithium hydroxide was not efficient to disperse low-CEC electropositive soils and very efficient in dispersing high-CEC electronegative soils. The use of coarse sand as an abrasive increased the clay content of all soils and in all treatments in which dispersion occurred, with or without the use of chemical dispersants. The efficiency of coarse sand is not the same for all soil classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg-1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Paraná State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G), bulk density (D) and organic matter content (M). The penetration resistance curve (PR) was adjusted using two non-linear models (PR = a Db Gc and PR' = a Db Gc Md), where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91 % of PR variability, compared to 82 % of the other model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil properties play an important role in spatial variability of crop yield. However, a low spatial correlation has generally been observed between maps of crop yield and of soil properties. The objectives of the present investigation were to assess the spatial pattern variability of soil properties and of corn yield at the same sampling intensity, and evaluate its cause-and-effect relationships. The experimental site was structured in a grid of 100 referenced points, spaced at 10 m intervals along four parallel 250 m long rows spaced 4.5 m apart. Thus, points formed a rectangle containing four columns and 25 rows. Therefore, each sampling cell encompassed an area of 45 m² and consisted of five 10 m long crop rows, in which the referenced points represented the center. Samples were taken from the layers 0-0.1 m and 0.1-0.2 m. Soil physical and chemical properties were evaluated. Statistical analyses consisted of data description and geostatistics. The spatial dependence of corn yield and soil properties was confirmed. The hypothesis of this study was confirmed, i.e., when sampling the soil to determine the values of soil characteristics at similar to sampling intensity as for crop yield assessments, correlations between the spatial distribution of soil characteristics and crop yield were observed. The spatial distribution pattern of soil properties explained 65 % of the spatial distribution pattern of corn yield. The spatial distribution pattern of clay content and percentage of soil base saturation explained most of the spatial distribution pattern of corn yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The species Salix x rubens is being grown on the Southern Plateau of Santa Catarina since the 1940s, but so far the soil fertility requirements of the crop have not been assessed. This study is the first to evaluate the production profile of willow plantations in this region, based on the modified method of Summer & Farina (1986), for the recommendation of fertility levels for willow. By this method, based on the law of Minimum and of Maximum for willow production for the conditions on the Southern Plateau of Santa Catarina, the following ranges could be recommended: pH: 5.0-6.5; P: 12-89 mg dm-3; Mg: 3.2-7.5 mg; Zn: 5.0-8.3 mg dm-3; Cu: 0.8-4.6 mg dm-3; and Mn; 20-164 mg dm-3. The Ca/Mg ratio should be between 1.2 and 2.9. For K and Ca only the lower (sufficiency level), but not the upper threshold (excess) was established, with respectively 114 mg dm-3 and 5.3 cmol c dm-3. It was also possible to determine the upper threshold for Al and the Al/Ca ratio, i.e., 1.7 cmol c dm-3 and 0.28, respectively. For maximum yields, the clay in the soil surface layer should be below 320 g dm-3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazil extensive areas are covered with pine forests, planted for pulp and paper production. This industry generates solid alkaline waste, such as dregs. The application of this dregs to forest soils is an alternative for soil acidity correction and plant nutrient supply, as well as a solution for its proper disposal. The purpose of this study was to compare the residual effect of surface application of dregs and dolomitic lime on (a) changes in the physical and chemical properties of an acidic soil and (b) pine tree development. The experiment was carried out in 2004 in Bocaina do Sul, Santa Catarina, consisting of the application of increasing dreg and lime rates to a Pinus taeda L. production area, on a Humic Cambisol, in a randomized block design with four replications and 10 x 10 m plots. The treatments consisted of levels of soil acidity amendments corresponding to the recommendations by the SMP method to reach pH 5.5 in the 0-20 cm layer, as follows: no soil amendment; dregs at 5.08 (1/4 SMP), 10.15 (1/2 SMP) and 20.3 Mg ha-1 (1 SMP); and lime at 8.35 (1/2 SMP) and 16.7 Mg ha-1 (1 SMP). Soil layers were sampled in 2010 for analyses of soil chemical and physical properties. The diameter at breast height of the 6.5 year old pine trees was also evaluated. Surface application of dregs improved soil chemical fertility by reducing acidity and increasing base saturation, similar to liming, especially in surface layers. Dregs, comparable to lime, reduced the degree of clay flocculation, but did not affect the soil physical quality. There was no effect of the amendments on increase in pine tree diameter. Thus, the alternative to raise the pH in forest soils to 5.5 with dregs is promising for the forestry sector with a view to dispose of the waste and increase soil fertility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersion of the samples in soil particle-size analysis is a fundamental step, which is commonly achieved with a combination of chemical agents and mechanical agitation. The purpose of this study was to evaluate the efficiency of a low-speed reciprocal shaker for the mechanical dispersion of soil samples of different textural classes. The particle size of 61 soil samples was analyzed in four replications, using the pipette method to determine the clay fraction and sieving to determine coarse, fine and total sand fractions. The silt content was obtained by difference. To evaluate the performance, the results of the reciprocal shaker (RSh) were compared with data of the same soil samples available in reports of the Proficiency testing for Soil Analysis Laboratories of the Agronomic Institute of Campinas (Prolab/IAC). The accuracy was analyzed based on the maximum and minimum values defining the confidence intervals for the particle-size fractions of each soil sample. Graphical indicators were also used for data comparison, based on dispersion and linear adjustment. The descriptive statistics indicated predominantly low variability in more than 90 % of the results for sand, medium-textured and clay samples, and for 68 % of the results for heavy clay samples, indicating satisfactory repeatability of measurements with the RSh. Medium variability was frequently associated with silt, followed by the fine sand fraction. The sensitivity analyses indicated an accuracy of 100 % for the three main separates (total sand, silt and clay), in all 52 samples of the textural classes heavy clay, clay and medium. For the nine sand soil samples, the average accuracy was 85.2 %; highest deviations were observed for the silt fraction. In relation to the linear adjustments, the correlation coefficients of 0.93 (silt) or > 0.93 (total sand and clay), as well as the differences between the angular coefficients and the unit < 0.16, indicated a high correlation between the reference data (Prolab/IAC) and results obtained with the RSh. In conclusion, the mechanical dispersion by the reciprocal shaker of soil samples of different textural classes was satisfactory. The results allowed recommending the use of the equipment at low agitation for particle size- analysis. The advantages of this Brazilian apparatus are its low cost, the possibility to simultaneously analyze a great number of samples using ordinary, easily replaceable glass or plastic bottles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT) and conventional tillage (CT), since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile) in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI), mean weighted diameter (MWD), mean geometric diameter (MGD) in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC), flocculation index (FI) and bulk density (Bd)) and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH). The results indicated that more intense soil preparation (M < NT < PC) resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A good knowledge of the spatial distribution of clay minerals in the landscape facilitates the understanding of the influence of relief on the content and crystallographic attributes of soil minerals such as goethite, hematite, kaolinite and gibbsite. This study aimed at describing the relationships between the mineral properties of the clay fraction and landscape shapes by determining the mineral properties of goethite, hematite, kaolinite and gibbsite, and assessing their dependence and spatial variability, in two slope curvatures. To this end, two 100 × 100 m grids were used to establish a total of 121 regularly spaced georeferenced sampling nodes 10 m apart. Samples were collected from the layer 0.0-0.2 m and analysed for iron oxides, and kaolinite and gibbsite in the clay fraction. Minerals in the clay fraction were characterized from their X-ray diffraction (XRD) patterns, which were interpreted and used to calculate the width at half height (WHH) and mean crystallite dimension (MCD) of iron oxides, kaolinite, and gibbsite, as well as aluminium substitution and specific surface area (SSA) in hematite and goethite. Additional calculations included the goethite and hematite contents, and the goethite/(goethite+hematite) [Gt/(Gt+Hm)] and kaolinite/(kaolinite+gibbsite) [Kt/(Kt+Gb)] ratios. Mineral properties were established by statistical analysis of the XRD data, and spatial dependence was assessed geostatistically. Mineralogical properties differed significantly between the convex area and concave area. The geostatistical analysis showed a greater number of mineralogical properties with spatial dependence and a higher range in the convex than in the concave area.