506 resultados para sheath
Resumo:
We present an analysis of a “quasi-steady” cusp ion dispersion signature observed at low altitudes. We reconstruct the field-parallel part of the Cowley-D ion distribution function, injected into the open LLBL in the vicinity of the reconnection X-line. From this we find the field-parallel magnetosheath flow at the X-line was only 20 ± 60 km s−1, placing the reconnection site close to the flow streamline which is perpendicular to the magnetosheath field. Using interplanetary data and assuming the subsolar magnetopause is in pressure balance, we derive a wealth of information about the X-line, including: the density, flow, magnetic field and Alfvén speed of the magnetosheath; the magnetic shear across the X-line; the de-Hoffman Teller speed with which field lines emerge from the X-line; the magnetospheric field; and the ion transmission factor across the magnetopause. The results indicate that some heating takes place near the X-line as the ions cross the magnetopause, and that sheath densities may be reduced in a plasma depletion layer. We also compute the reconnection rate. Despite its quasi-steady appearance on an ion spectrogram, this cusp is found to reveal a large pulse of enhanced reconnection rate.
Resumo:
Combined observations by meridian-scanning photometers, all-sky auroral TV camera and the EISCAT radar permitted a detailed analysis of the temporal and spatial development of the midday auroral breakup phenomenon and the related ionospheric ion flow pattern within the 71°–75° invariant latitude radar field of view. The radar data revealed dominating northward and westward ion drifts, of magnitudes close to the corresponding velocities of the discrete, transient auroral forms, during the two different events reported here, characterized by IMF |BY/BZ| < 1 and > 2, respectively (IMF BZ between −8 and −3 nT and BY > 0). The spatial scales of the discrete optical events were ∼50 km in latitude by ∼500 km in longitude, and their lifetimes were less than 10 min. Electric potential enhancements with peak values in the 30–50 kV range are inferred along the discrete arc in the IMF |BY/BZ| < 1 case from the optical data and across the latitudinal extent of the radar field of view in the |BY/BZ| > 2 case. Joule heat dissipation rates in the maximum phase of the discrete structures of ∼ 100 ergs cm−2 s−1 (0.1 W m−2) are estimated from the photometer intensities and the ion drift data. These observations combined with the additional characteristics of the events, documented here and in several recent studies (i.e., their quasi-periodic nature, their motion pattern relative to the persistent cusp or cleft auroral arc, the strong relationship with the interplanetary magnetic field and the associated ion drift/E field events and ground magnetic signatures), are considered to be strong evidence in favour of a transient, intermittent reconnection process at the dayside magnetopause and associated energy and momentum transfer to the ionosphere in the polar cusp and cleft regions. The filamentary spatial structure and the spectral characteristics of the optical signature indicate associated localized ˜1-kV potential drops between the magnetopause and the ionosphere during the most intense auroral events. The duration of the events compares well with the predicted characteristic times of momentum transfer to the ionosphere associated with the flux transfer event-related current tubes. It is suggested that, after this 2–10 min interval, the sheath particles can no longer reach the ionosphere down the open flux tube, due to the subsequent super-Alfvénic flow along the magnetopause, conductivities are lower and much less momentum is extracted from the solar wind by the ionosphere. The recurrence time (3–15 min) and the local time distribution (∼0900–1500 MLT) of the dayside auroral breakup events, combined with the above information, indicate the important roles of transient magnetopause reconnection and the polar cusp and cleft regions in the transfer of momentum and energy between the solar wind and the magnetosphere.
Resumo:
Matrix-assisted laser desorption/ionisation (MALDI) coupled with time-of-flight (TOF) mass spectrometry (MS) is a powerful tool for the analysis of biological samples, and nanoflow high-performance liquid chromatography (nanoHPLC) is a useful separation technique for the analysis of complex proteomics samples. The off-line combination of MALDI and nanoHPLC has been extensively investigated and straightforward techniques have been developed, focussing particularly on automated MALDI sample preparation that yields sensitive and reproducible spectra. Normally conventional solid MALDI matrices such as α-cyano-4-hydroxycinnamic acid (CHCA) are used for sample preparation. However, they have limited usefulness in quantitative measurements and automated data acquisition because of the formation of heterogeneous crystals, resulting in highly variable ion yields and desorption/ ionization characteristics. Glycerol-based liquid support matrices (LSM) have been proposed as an alternative to the traditional solid matrices as they provide increased shot-to-shot reproducibility, leading to prolonged and stable ion signals and therefore better results. This chapter focuses on the integration of the liquid LSM MALDI matrices into the LC-MALDI MS/MS approach in identifying complex and large proteomes. The interface between LC and MALDI consists of a robotic spotter, which fractionates the eluent from the LC column into nanoliter volumes, and co-spots simultaneously the liquid matrix with the eluent fractions onto a MALDI target plate via sheath flow. The efficiency of this method is demonstrated through the analysis of trypsin digests of both bovine serum albumin (BSA) and Lactobacillus plantarum WCFS1 proteins.
Resumo:
The etiology of idiopathic peripheral facial palsy (IPFP) is still uncertain; however, some authors suggest the possibility of a viral infection. Aim: to analyze the ultrastructure of the facial nerve seeking viral evidences that might provide etiological data. Material and Methods: We studied 20 patients with peripheral facial palsy (PFP), with moderate to severe FP, of both genders, between 18-60 years of age, from the Clinic of Facial Nerve Disorders. The patients were broken down into two groups - Study: eleven patients with IPFP and Control: nine patients with trauma or tumor-related PFP. The fragments were obtained from the facial nerve sheath or from fragments of its stumps - which would be discarded or sent to pathology exam during the facial nerve repair surgery. The removed tissue was fixed in 2% glutaraldehyde, and studied under Electronic Transmission Microscopy. Results: In the study group we observed an intense repair cellular activity by increased collagen fibers, fibroblasts containing developed organelles, free of viral particles. In the control group this repair activity was not evident, but no viral particles were observed. Conclusion: There were no viral particles, and there were evidences of intense activity of repair or viral infection.
Resumo:
Background and Aims The amount of data collected previously for Velloziaceae neither clarified relationships within the family nor helped determine an appropriate classification, which has led to huge discordance among treatment by different authors. To achieve an acceptable phylogenetic result and understand the evolution and roles of characters in supporting groups, a total evidence analysis was developed which included approx. 20 % of the species and all recognized genera and sections of Velloziaceae, plus outgroups representatives of related families within Pandanales. Methods Analyses were undertaken with 48 species of Velloziaceae, representing all ten genera, with DNA sequences from the atpB-rbcL spacer, trnL-trnF spacer, trnL intron, trnH-psbA spacer, ITS ribosomal DNA spacers and morphology. Key Results Four groups consistently emerge from the analyses. Persistent leaves, two phloem strands, stem cortex divided in three regions and violet tepals support Acanthochlamys as sister to Velloziaceae s. s., which are supported mainly by leaves with marginal bundles, transfusion tracheids and inflorescence without axis. Within Velloziaceae s. s., an African Xerophyta + Talbotia clade is uniquely supported by basal loculicidal capsules; an American clade, Barbacenia s. l. + Barbaceniopsis + Nanuza + Vellozia, is supported by only homoplastic characters. Barbacenia s. l. (Aylthonia + Barbacenia + Burlemarxia + Pleurostima) is supported by a double sheath in leaf vascular bundles and a corona; Barbaceniopsis + Nanuza + Vellozia is not supported by an unambiguous character, but Barbaceniopsis is supported by five characters, including diclinous flowers, Nanuza + Vellozia is supported mainly by horizontal stigma lobes and stem inner cortex cells with secondary walls, and Vellozia alone is supported mainly by pollen in tetrads. Conclusions The results imply recognition of five genera (Acanthochlamys (Xerophyta (Barbacenia (Barbaceniopsis, Vellozia)))), solving the long-standing controversies among recent classifications of the family. They also suggest a Gondwanan origin for Velloziaceae, with a vicariant pattern of distribution.
Resumo:
The purpose of this study is to evaluate the influence of the undermining of the subcutaneous tissue on the tension of the abdominal wall, after the components separation of the abdominal muscles. Twenty adult cadavers were studied. The resistance of the medial advancement of both anterior and posterior recti sheaths was represented by the traction index and measured in 2 levels-3 cm above and 2 cm below the umbilicus. Traction indices were compared in the following 3 consecutive dissection situations: (1) after the subcutaneous tissue undermining laterally to the semilunaris line; (2) after the dissection of the rectus muscle from its posterior sheath associated with the release of the external oblique muscle; (3) after the subcutaneous tissue undermining laterally to the anterior axillary line. Friedman and Spearman tests were used to compare the results. There was no statistical significant difference between the subcutaneous tissue undermining laterally to the semilunaris line and that laterally to the anterior axillary line, when associated with the musculoaponeurotic dissections. In conclusion, limited subcutaneous undermining does not influence the tension of closure of the musculoaponeurotic layer after the components separation technique in cadavers.
Resumo:
Anisotropy of thermal stresses in confined dusty plasmas is considered. It is shown that in a multi-component low-temperature plasma containing electrons, ions and dust, the complicated dependence of the ion viscosity on ion temperature gradients leads to a plasma equilibrium state with anisotropic pressure. This pressure anisotropy can be of the order of the ion pressure in some limiting cases, in which the ion Larmor radius or the ion mean free path are of the order of the characteristic length of the plasma nonuniformity. For a sufficiently large dust number density, they contribute to the plasma pressure anisotropy and to its spatial dependence. Currently, it is not yet clear whether this equilibrium state is stable or not. Under these conditions, some convective plasma flows can arise in confinement devices. Therefore, this question needs special consideration.
Resumo:
in this work, a simple method for the simultaneous determination of cocaine (COC) and five COC metabolites (benzoylecgonine, cocaethylene (CET), anhydroecgonine, anhydroecgonine methyl ester and ecgonine methyl ester) in human urine using CE coupled to MS via electrospray ionization (CE-ESI-MS) was developed and validated. Formic acid at 1 mol/L concentration was used as electrolyte whereas formic acid at 0.05 mol/L concentration in 1:1 methanol:water composed the coaxial sheath liquid at the ESI nozzle. The developed method presented good linearity in the dynamic range from 250 ng/mL to 5000 ng/mL (coefficient of determination greater than 0.98 for all compounds). LODs (signal-to-noise ratio of 3) were 100 ng/mL for COC and CET and 250 ng/mL for the other studied metabolites whereas LOQ`s (signal-to-noise ratio of 10) were 250 ng/mL for COC and CET and 500 ng/mL for all other compounds. Intra-day precision and recovery tests estimated at three different concentration levels (500, 1500 and 5000 ng/mL) provided RSD lower than 10% (except anhydroecgonine, 18% RSD) and recoveries from 83-109% for all analytes. The method was successfully applied to real cases. For the positive urine samples, the presence of COC and its` metabolites was further confirmed by MS/MS experiments.
Resumo:
In this work, a CE equipment, online hyphenated to an IT MS analyzer by a linear sheath liquid interface promoting ESI, was used to develop a method for quantitative determination of amino acids. Under appropriate conditions (BGE composition, 0.8% HCOOH, 20% CH(3)OH; sheath liquid composition, 0.8% HCOOH, 60% methanol; V(ESI), +4.50 W), analytical curves of all amino acids from 3 to 80 mg/L were recorded presenting acceptable linearity (r > 0.99). LODs in the range of 16-172 mu mol/L were obtained. BSA, a model protein, was submitted to different hydrolysis procedures (classical acid and basic, and catalyzed by the H(+) form of a cation exchanger resin) and its amino acid profiles determined. In general, the resin-mediated hydrolysis yields were overall similar or better than those obtained by classical acid or basic hydrolysis. The resulting experimental-to-theoretical BSA concentration ratios served as correction factors for the quantitation of amino acids in Brazil nut resin generated hydrolysates.
Resumo:
Protein hydrolysates have been used as active principles in cosmetic products conferring different properties to the final formulations, which are mostly controlled by the peptide size and its amino acid sequence. In this work, capillary electrophoresis coupled to mass spectrometry analyses were carried out in order to investigate such characteristics of protein hydrolysates. Samples of different origins (milk, soy and rice) were obtained from a local company, and were analyzed without a previous preparation step. The background electrolyte (BGE) and sheath liquid compositions were optimized for each sample. The best BGE composition (860 mmol/L formic acid - pH 1.8 - in 70: 30 v/v water/methanol hydro-organic solvent) was chosen based on the overall peak resolution whereas the best sheath liquid was selected based on increased sensitivity and presented different compositions to each sample (10.9-217 mmol/L formic acid in 75: 25-25: 75 v/v water/methanol hydro-organic solvent). Most of the putative peptides in the hydrolysate samples under investigation presented molecular masses of 1000 Da or less. De novo sequencing was carried out for some of the analytes, revealing the hydrophobicity/polarity of the peptides. Hence, the technique has proved to be an advantageous tool for the quality control of industrial protein hydrolysates.
Resumo:
O espessamento intimal e a reestenose que ocorrem após os procedimentos de angioplastia transluminal percutânea e/ou o implante de stents representam uma causa freqüente de falência destes procedimentos. O principal achado patológico responsável pela reestenose parece ser a hiperplasia intimal, já que o dispositivo intravascular é resistente ao remodelamento arterial geométrico. O propósito deste estudo é avaliar, através da morfometria digital, o espessamento intimal presente nas regiões da parede arterial imediatamente proximal e distal ao implante de um stent metálico em configuração em “Z “ não recoberto ou recoberto com PTFE. Vinte e cinco suínos de raça mista, com seis a dez semanas de idade, pesando em média 20 kg foram divididos em três grupos. No grupo I, cinco animais foram submetidos à exposição cirúrgica retroperitoneal da aorta abdominal, aortotomia e manipulação com uma bainha introdutora de 12 F. O grupo II incluiu dez animais que foram submetidos ao implante de um stent metálico auto-expansível não recoberto. No grupo III, incluindo também dez animais, foram implantados stents recobertos com PTFE. Após quatro semanas, todos os animais foram sacrificados e o segmento aorto-ilíaco foi removido. Quatro animais foram excluídos do estudo por trombose da aorta (um animal do grupo II e três animais do grupo III). Para a análise morfométrica foram utilizados os testes não paramétricos de Wilcoxon e de Kruskal-Wallis, para as comparações, respectivamente, no mesmo grupo e entre os grupos. Foi adotado o nível de significância de 5% ( p< 0,05). Quando os espécimes da parede arterial, imediatamente proximal e distal aos stents foram comparados, nenhuma diferença estatisticamente significativa foi encontrada entre as áreas luminal, intimal, média ou índice intimal em cada grupo. Na comparação entre os grupos, as áreas intimal, média e o índice intimal não demonstraram variação estatisticamente significativa. Foram identificadas diferenças entre os grupos quanto às áreas luminais proximais (p = 0,036) e distais (p=0,044). Pelo teste de comparações múltiplas para Kruskal-Wallis (Teste de Dunn) identificou-se diferença significativa entre os grupos I e II. Entretanto, quando estas variáveis foram controladas pelo fator peso (relação área luminal/peso) a diferença não foi mais observada. Concluímos que, após quatro semanas, stents recobertos com PTFE induzem um espessamento intimal justa-stent similar ao observado com stents não recobertos ou com a simples manipulação arterial com uma bainha introdutora. Neste modelo experimental suíno, de curto seguimento, o revestimento com PTFE não foi responsável por adicional espessamento intimal.
Resumo:
A procura de um método que permita um melhor resultado na anastomose de um nervo completamente seccionado é antiga. Há muitos anos a técnica, dita convencional, para aproximação dos cotos afastados do nervo lesado, é realizada com pontos de fios microcirúrgicos. Mais recentemente, a utilização da cola de fibrina tem permitido a adesão de tecidos, como pele, fáscia e outras estruturas anatômicas. O uso da cola de fibrina, na aproximação das extremidades nervosas, tem sido propagada pela indústria como um fato incontestável. No entanto, somente com a realização de estudos comparativos clínicos e laboratoriais tornou-se possível comparar a eficácia da cola de fibrina como agente de reconstituição em lesões de nervos periféricos. Com o objetivo de comprovar essa afirmação foi realizado um trabalho através de uma mensuração nas bainhas de mielina de cotos regenerados de nervos entre diferentes tipos de anastomose nervosas em nervo isquiático de ratos da raça Wistar. Com esse mesmo escopo, foi mensurado o número de axônios em regeneração após o uso dessa cola. Foi utilizada uma amostra de 35 ratos divididos em 03 grupos (A, B e C). No grupo A, 25 ratos foram submetidos à cirurgia com o uso da cola de fibrina para a anastomose nervosa. No grupo B, 05 ratos foram submetidos ao mesmo procedimento; entretanto, ao reparo nervoso acrescentou-se a utilização de dois pontos opostos de mononylon 9-0, usando-se cola de fibrina no seu interior. No terceiro grupo (C), 05 ratos foram submetidos a neurorrafia com 6 a 8 pontos de mononylon 9-0 sem auxílio da cola de fibrina (anastomose nervosa convencional). Os animais foram submetidos a um novo procedimento após 90 dias, quando o nervo isquiático tratado foi retirado e encaminhado para o estudo. Após esse procedimento, os animais foram sacrificados. Cabe esclarecer que os espécimens foram submetidas a uma preparação histológica, sendo avaliados. Para tanto, foi realizada uma mensuração da espessura média da bainha de mielina das fibras regeneradas. Também foi realizada uma medição do número de axônios regenerados em um milímetro quadrado. Com base nesses achados, foram comparados os resultados.
Resumo:
Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications