958 resultados para sentimental novel Hispano-American
Resumo:
OBJECTIVE: The mechanism underlying pericyte loss during incipient diabetic retinopathy remains controversial. Hyperglycemia induces angiopoietin-2 (Ang-2) transcription, which modulates capillary pericyte coverage. In this study, we assessed loss of pericyte subgroups and the contribution of Ang-2 to pericyte migration. RESEARCH DESIGN AND METHODS: Numbers of total pericytes and their subgroups were quantified in retinal digest preparations of spontaneous diabetic XLacZ mice. Pericytes were divided into subgroups according to their localization, their position relative to adjacent endothelial cells, and the expression of LacZ. The contribution of Ang-2 to pericyte migration was assessed in Ang-2 overexpressing (mOpsinhAng2) and deficient (Ang2LacZ) mice. RESULTS: Pericyte numbers were reduced by 16% (P < 0.01) in XLacZ mice after 6 months of diabetes. Reduction of pericytes was restricted to pericytes on straight capillaries (relative reduction 27%, P < 0.05) and was predominantly observed in LacZ-positive pericytes (-20%, P < 0.01). Hyperglycemia increased the numbers of migrating pericytes (69%; P < 0.05), of which the relative increase due to diabetes was exclusively in LacZ-negative pericytes, indicating reduced adherence to the capillaries (176%; P < 0.01). Overexpression of Ang-2 in nondiabetic retinas mimicked diabetic pericyte migration of wild-type animals (78%; P < 0.01). Ang-2 deficient mice completely lacked hyperglycemia-induced increase in pericyte migration compared with wild-type littermates. CONCLUSIONS: Diabetic pericyte loss is the result of pericyte migration, and this process is modulated by the Ang-Tie system.
Resumo:
Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.
Resumo:
BACKGROUND: Chronic meningococcemia (CM) is a diagnostic challenge. Skin lesions are frequent but in most cases nonspecific. Polymerase chain reaction (PCR)-based diagnosis has been validated in blood and cerebrospinal fluid for acute Neisseria meningitidis infection, in patients in whom routine microbiologic tests have failed to isolate the bacteria. In 2 patients with CM, we established the diagnosis by a newly developed PCR-based approach performed on skin biopsy specimens. OBSERVATIONS: Two patients presented with fever together with systemic and cutaneous manifestations suggestive of CM. Although findings from blood cultures remained negative, we were able to identify N meningitidis in the skin lesions by a newly developed PCR assay. In 1 patient, an N meningitidis strain of the same serogroup was also isolated from a throat swab specimen. Both patients rapidly improved after appropriate antibiotherapy. CONCLUSIONS: To our knowledge, we report the first cases of CM diagnosed by PCR testing on skin biopsy specimens. It is noteworthy that, although N meningitidis-specific PCR is highly sensitive in blood and cerebrospinal fluid in acute infections, our observations underscore the usefulness of PCR performed on skin lesions for the diagnosis of chronic N meningitidis infections. Whenever possible, this approach should be systematically employed in patients for whom N meningitidis infection cannot be confirmed by routine microbiologic investigations.
Resumo:
The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.
Resumo:
Why some invasive plant species transmogrify from weak competitors at home to strong competitors abroad remains one of the most elusive questions in ecology. Some evidence suggests that disproportionately high densities of some invaders are due to the release of biochemicals that are novel, and therefore harmful, to naive organisms in their new range. So far, such evidence has been restricted to the direct phytotoxic effects of plants on other plants. Here we found that one of North America's most aggressive invaders of undisturbed forest understories, Alliaria petiolata (garlic mustard) and a plant that inhibits mycorrhizal fungal mutualists of North American native plants, has far stronger inhibitory effects on mycorrhizas in invaded North American soils than on mycorrhizas in European soils where A. petiolata is native. This antifungal effect appears to be due to specific flavonoid fractions in A. petiolata extracts. Furthermore, we found that suppression of North American mycorrhizal fungi by A. petiolata corresponds with severe inhibition of North American plant species that rely on these fungi, whereas congeneric European plants are weakly affected. These results indicate that phytochemicals, benign to resistant mycorrhizal symbionts in the home range, may be lethal to naive native mutualists in the introduced range and indirectly suppress the plants that rely on them.
Resumo:
Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.
Resumo:
Cannabinoid receptor 2 (CB(2) receptor) ligands are potential candidates for the therapy of chronic pain, inflammatory disorders, atherosclerosis, and osteoporosis. We describe the development of pharmacophore models for CB(2) receptor ligands, as well as a pharmacophore-based virtual screening workflow, which resulted in 14 hits for experimental follow-up. Seven compounds were identified with K(i) values below 25 microM. The CB(2) receptor-selective pyridine tetrahydrocannabinol analogue 8 (K(i) = 1.78 microM) was identified as a CB(2) partial agonist. Acetamides 12 (K(i) = 1.35 microM) and 18 (K(i) = 2.1 microM) represent new scaffolds for CB(2) receptor-selective antagonists and inverse agonists, respectively. Overall, our pharmacophore-based workflow yielded three novel scaffolds for the chemical development of CB(2) receptor ligands.
Resumo:
We showed recently that low molecular weight dextran sulfate (DXS) acts as an endothelial cell (EC) protectant and prevents human complement- and NK cell-mediated cytotoxicity towards porcine cells in vitro. We therefore hypothesized that DXS, combined with cyclosporine A (CyA), could prevent acute vascular rejection (AVR) in the hamster-to-rat cardiac xenotransplantation model. Untreated, CyA-only, and DXS-only treated rats rejected their grafts within 4-5 days. Of the hearts grafted into rats receiving DXS in combination with CyA, 28% survived more than 30 days. Deposition of anti-hamster antibodies and complement was detected in long-term surviving grafts. Combined with the expression of hemoxygenase 1 (HO-1) on graft EC, these results indicate that accommodation had occurred. Complement activity was normal in rat sera after DXS injection, and while systemic inhibition of the coagulation cascade was observed 1 h after DXS injection, it was absent after 24 h. Moreover, using a fluorescein-labeled DXS (DXS-Fluo) injected 1 day after surgery, we observed a specific binding of DXS-Fluo to the xenograft endothelium. In conclusion, we show here that DXS + CyA induces long-term xenograft survival and we provide evidence that DXS might act as a local EC protectant also in vivo.
Resumo:
OBJECTIVES: Recently, a genome-wide association study showed that single-nucleotide polymorphisms (SNPs) in the chromosome 4q27 region containing IL2 and IL21 are associated with celiac disease. Given the increased prevalence of inflammatory bowel disease (IBD) among celiac disease patients, we investigated the possible involvement of these SNPs in IBD. METHODS: Five SNPs strongly associated with celiac disease within the KIAA1109/TENR/IL2/IL21 linkage disequilibrium block on chromosome 4q27 and one coding SNP within the IL21 gene were analyzed in a large German IBD cohort. The study population comprised a total of 2,948 Caucasian individuals, including 1,461 IBD patients (ulcerative colitis (UC): n=514, Crohn's disease (CD): n=947) and 1,487 healthy unrelated controls. RESULTS: Three of the five celiac disease risk markers had a protective effect on UC susceptibility, and this effect remained significant after correcting for multiple testing: rs6840978: P=0.0082, P(corr)=0.049, odds ratio (OR) 0.77, 95% confidence interval (CI) 0.63-0.93; rs6822844: P=0.0028, P(corr)=0.017, OR 0.73, 95% CI 0.59-0.90; rs13119723: P=0.0058, P(corr)=0.035, OR 0.75, 95% CI 0.61-0.92. A haplotype consisting of the six SNPs tested was markedly associated with UC susceptibility (P=0.0025, P(corr)=0.015, OR 0.72, 95% CI 0.58-0.89). Moreover, in UC, epistasis was observed between the IL23R SNP rs1004819 and three SNPs in the KIAA1109/TENR/IL2/IL21 block (rs13151961, rs13119723, and rs6822844). CONCLUSIONS: Similar to other autoimmune diseases such as celiac disease, rheumatoid arthritis, type 1 diabetes, Graves' disease, and psoriatic arthritis, genetic variation in the chromosome 4q27 region predisposes to UC, suggesting a common genetic background for these diseases.
Resumo:
The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.
Resumo:
A novel picornavirus was isolated from specimens of a diseased European eel (Anguilla anguilla). This virus induced a cytopathic effect in eel embryonic kidney cells and high mortality in a controlled transmission study using elvers. Eel picornavirus has a genome of 7,496 nucleotides that encodes a polyprotein of 2,259 amino acids. It has a typical picornavirus genome layout, but its low similarity to known viral proteins suggests a novel species in the family Picornaviridae.
Resumo:
Trypanosoma brucei is a unicellular parasite that causes devastating diseases in humans and animals. It diverged from most other eukaryotes very early in evolution and, as a consequence, has an unusual mitochondrial biology. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the parasite. The outer mitochondrial membrane defines the boundary of the organelle. Its properties are therefore key for understanding how the cytosol and mitochondria communicate and how the organelle is integrated into the metabolism of the whole cell. We have purified the mitochondrial outer membrane of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal outer membrane proteome consists of 82 proteins, two-thirds of which have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins, 33 of which are specific to trypanosomatids, remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and for the first time identified factors that control mitochondrial shape in T. brucei.