869 resultados para selection model
Resumo:
Nowadays, most of the infrastructure development projects undertaken are complex in nature. Practically, public clients who do not have a good understanding of the design and management may suffer severe losses, especially for infrastructure projects. There is a need for luring the right consultant to secure client's investment in infrastructure developments. Throughout the project life cycle, consultants play vital role from the inception to completion stage of a project. A few studies in Malaysia show that infrastructure projects involving irrigation and drainage have experience problems such as poor workmanship, delay and cost overrun due to the consultant's inability or the client incompetence of recruiting consultants in time. This highlights the need of aided decision making and an efficient system to select the best consultant by using Decision Support System (DSS). On the other hand, recent trends reveal that most DSS in construction only concentrate on decision model development. These models are impractical and unused as they are complicated or difficult for laymen such as project managers to utilize. Thus, this research attempts to develop an efficient DSS for consultant selection namely consultDeSS. Driven by the motivation and research aims, this study deployed Design Science Research Methodology (DSRM) dominant with a combination of case studies at the Malaysian Department of Irrigation and Drainage (DID). Two real projects involving irrigation and drainage infrastructure were used to design, implement and evaluate the artefact. The 3-tier consultDeSS was revised after the evaluation and the design was significantly improved based on user feedback. By developing desirable tools that fit client's needs will enhance the productivity and minimize conflict within groups and organisations. The tool is more usable and efficient compared to previous studies in construction. Thus, this research has demonstrated a purposeful artefact with a practical and valid structured development approach that is applicable in a variety of problems in construction discipline.
Resumo:
Purpose: Data from two randomized phase III trials were analyzed to evaluate prognostic factors and treatment selection in the first-line management of advanced non-small cell lung cancer patients with performance status (PS) 2. Patients and Methods: Patients randomized to combination chemotherapy (carboplatin and paclitaxel) in one trial and single-agent therapy (gemcitabine or vinorelbine) in the second were included in these analyses. Both studies had identical eligibility criteria and were conducted simultaneously. Comparison of efficacy and safety was performed between the two cohorts. A regression analysis identified prognostic factors and subgroups of patients that may benefit from combination or single-agent therapy. Results: Two hundred one patients were treated with combination and 190 with single-agent therapy. Objective responses were 37 and 15%, respectively. Median time to progression was 4.6 months in the combination arm and 3.5 months in the single-agent arm (p < 0.001). Median survival imes were 8.0 and 6.6 months, and 1-year survival rates were 31 and 26%, respectively. Albumin <3.5 g, extrathoracic metastases, lactate dehydrogenase ≥200 IU, and 2 comorbid conditions predicted outcome. Patients with 0-2 risk factors had similar outcomes independent of treatment, whereas patients with 3-4 factors had a nonsignificant improvement in median survival with combination chemotherapy. Conclusion: Our results show that PS2 non-small cell lung cancer patients are a heterogeneous group who have significantly different outcomes. Patients treated with first-line combination chemotherapy had a higher response and longer time to progression, whereas overall survival did not appear significantly different. A prognostic model may be helpful in selecting PS 2 patients for either treatment strategy. © 2009 by the International Association for the Study of Lung Cancer.
Resumo:
Achieving sustainable urban development is identified as one ultimate goal of many contemporary planning endeavours and has become central to formulation of urban planning policies. Within this concept, land-use and transport integration is highlighted as one of the most important and attainable policy objectives. In many cities, integration is embraced as an integral part of local development plans, and a number of key integration principles are identified. However, the lack of available evaluation methods to measure extent of urban sustainability levels prevents successful implementation of these principles. This paper introduces a new indicator-based spatial composite indexing model developed to measure sustainability performance of urban settings by taking into account land-use and transport integration principles. Model indicators are chosen via a thorough selection process in line with key principles of land-use and transport integration. These indicators are grouped into categories and themes according to their topical relevance. These indicators are then aggregated to form a spatial composite index to portray an overview of the sustainability performance of the pilot study area used for model demonstration. The study results revealed that the model is a practical instrument for evaluating success of local integration policies and visualizing sustainability performance of built environments and useful in both identifying problematic areas as well as formulating policy interventions.
Resumo:
Ureaplasmas are the microorganisms most frequently isolated from the amniotic fluid of pregnant women and can cause chronic intrauterine infections. These tiny bacteria are thought to undergo rapid evolution and exhibit a hypermutatable phenotype; however, little is known about how ureaplasmas respond to selective pressures in utero. Using an ovine model of chronic intra-amniotic infection, we investigated if exposure of ureaplasmas to sub-inhibitory concentrations of erythromycin could induce phenotypic or genetic indicators of macrolide resistance. At 55 days gestation, 12 pregnant ewes received an intra-amniotic injection of a non-clonal, clinical U. parvum strain, followed by: (i) erythromycin treatment (IM, 30 mg/kg/day, n=6); or (ii) saline (IM, n=6) at 100 days gestation. Fetuses were then delivered surgically at 125 days gestation. Despite injecting the same inoculum into all ewes, significant differences between amniotic fluid and chorioamnion ureaplasmas were detected following chronic intra-amniotic infection. Numerous polymorphisms were observed in domain V of the 23S rRNA gene of ureaplasmas isolated from the chorioamnion (but not the amniotic fluid), resulting in a mosaic-like sequence. Chorioamnion isolates also harboured the macrolide resistance genes erm(B) and msr(D) and were associated with variable roxithromycin minimum inhibitory concentrations. Remarkably, this variability occurred independently of exposure of ureaplasmas to erythromycin, suggesting that low-level erythromycin exposure does not induce ureaplasmal macrolide resistance in utero. Rather, the significant differences observed between amniotic fluid and chorioamnion ureaplasmas suggest that different anatomical sites may select for ureaplasma sub-types within non-clonal, clinical strains. This may have implications for the treatment of intrauterine ureaplasma infections.
Resumo:
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.
Resumo:
A spatial process observed over a lattice or a set of irregular regions is usually modeled using a conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally formed deterministically using the inter-distances or boundaries between the regions. An extension of CAR model is proposed in this article where the selection of the neighborhood depends on unknown parameter(s). This extension is called a Stochastic Neighborhood CAR (SNCAR) model. The resulting model shows flexibility in accurately estimating covariance structures for data generated from a variety of spatial covariance models. Specific examples are illustrated using data generated from some common spatial covariance functions as well as real data concerning radioactive contamination of the soil in Switzerland after the Chernobyl accident.
Resumo:
Too often the relationship between client and external consultants is perceived as one of protagonist versus antogonist. Stories on dramatic, failed consultancies abound, as do related anecdotal quips. A contributing factor to many "apparently" failed consultancies is a poor appreciation by both the client and consultant of the client's true goals for the project and how to assess progress toward these goals. This paper presents and analyses a measurement model for assessing client success when engaging an external consultant. Three main areas of assessment are identified: (1) the consultant;s recommendations, (2) client learning, and (3) consultant performance. Engagement success is emperically measured along these dimensions through a series of case studies and a subsequent survey of clients and consultants involved in 85 computer-based information system selection projects. Validation fo the model constructs suggests the existence of six distinct and individually important dimensions of engagement success. both clients and consultants are encouraged to attend to these dimensions in pre-engagement proposal and selection processes, and post-engagement evaluation of outcomes.
Resumo:
Reliability of carrier phase ambiguity resolution (AR) of an integer least-squares (ILS) problem depends on ambiguity success rate (ASR), which in practice can be well approximated by the success probability of integer bootstrapping solutions. With the current GPS constellation, sufficiently high ASR of geometry-based model can only be achievable at certain percentage of time. As a result, high reliability of AR cannot be assured by the single constellation. In the event of dual constellations system (DCS), for example, GPS and Beidou, which provide more satellites in view, users can expect significant performance benefits such as AR reliability and high precision positioning solutions. Simply using all the satellites in view for AR and positioning is a straightforward solution, but does not necessarily lead to high reliability as it is hoped. The paper presents an alternative approach that selects a subset of the visible satellites to achieve a higher reliability performance of the AR solutions in a multi-GNSS environment, instead of using all the satellites. Traditionally, satellite selection algorithms are mostly based on the position dilution of precision (PDOP) in order to meet accuracy requirements. In this contribution, some reliability criteria are introduced for GNSS satellite selection, and a novel satellite selection algorithm for reliable ambiguity resolution (SARA) is developed. The SARA algorithm allows receivers to select a subset of satellites for achieving high ASR such as above 0.99. Numerical results from a simulated dual constellation cases show that with the SARA procedure, the percentages of ASR values in excess of 0.99 and the percentages of ratio-test values passing the threshold 3 are both higher than those directly using all satellites in view, particularly in the case of dual-constellation, the percentages of ASRs (>0.99) and ratio-test values (>3) could be as high as 98.0 and 98.5 % respectively, compared to 18.1 and 25.0 % without satellite selection process. It is also worth noting that the implementation of SARA is simple and the computation time is low, which can be applied in most real-time data processing applications.
Resumo:
Background: Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype–genotype link between the displayed protein and the encoding gene. Results: A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50–DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein–plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype–genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions: A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
Background Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype-genotype link between the displayed protein and the encoding gene. Results A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50-DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein-plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype-genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
This paper presents the application of a statistical method for model structure selection of lift-drag and viscous damping components in ship manoeuvring models. The damping model is posed as a family of linear stochastic models, which is postulated based on previous work in the literature. Then a nested test of hypothesis problem is considered. The testing reduces to a recursive comparison of two competing models, for which optimal tests in the Neyman sense exist. The method yields a preferred model structure and its initial parameter estimates. Alternatively, the method can give a reduced set of likely models. Using simulated data we study how the selection method performs when there is both uncorrelated and correlated noise in the measurements. The first case is related to instrumentation noise, whereas the second case is related to spurious wave-induced motion often present during sea trials. We then consider the model structure selection of a modern high-speed trimaran ferry from full scale trial data.
Resumo:
A number of human cancer cell lines have been described as being invasive and metastatic in immune incompetent animals. However, it is difficult to assess metastatic spread of a subcutaneously injected or inoculated cell line, since an exact detection of all microfoci of human tumour cells in the animals by usual histological procedures would require extensive sectioning of the whole animal. To overcome this problem, we transduced human breast cancer cells with a replication-defective Moloney murine leukaemia retroviral vector (M-MuLV) containing both neo(R) (neomycin resistance) and lacZ genes. The resulting cell lines were selected for antibiotic (G418) resistance, and cell-sorted for lacZ expression. lacZ continued to be expressed in cultured cells for at least 20 passages without further G418 selection. The lacE gene codes for β-D-galactosidase, and cells expressing this gene stain blue with the chromogenic substrate X-gal. The lacZ-expressing cells retained the pre-transduction ability to traverse Matrigel in vitro, to form subcutaneous tumours in nude mice, and to grow invasively with the formation of metastases. X-gal staining showed high specificity, staining the tumour cells but not the surrounding mouse tissue on either whole tissue blocks or histological sections. The staining procedure was highly sensitive, allowing detection of microfoci of human cancer cells, and quantitative estimation of the metastatic capacity of the cells. These results indicate that lacZ transduction of human tumour cells is a powerful means of studying human cancer cell invasion and metastases in vivo.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models.
Resumo:
As of today, online reviews have become more and more important in decision making process. In recent years, the problem of identifying useful reviews for users has attracted significant attentions. For instance, in order to select reviews that focus on a particular feature, researchers proposed a method which extracts all associated words of this feature as the relevant information to evaluate and find appropriate reviews. However, the extraction of associated words is not that accurate due to the noise in free review text, and this affects the overall performance negatively. In this paper, we propose a method to select reviews according to a given feature by using a review model generated based upon a domain ontology called product feature taxonomy. The proposed review model provides relevant information about the hierarchical relationships of the features in the review which captures the review characteristics accurately. Our experiment results based on real world review dataset show that our approach is able to improve the review selection performance according to the given criteria effectively.
Resumo:
Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.