942 resultados para sciatic nerve
Resumo:
Purpose: The authors estimated the retinal nerve fiber layer height (RNFLH) measurements in patients with glaucoma compared with those in age-matched healthy subjects as obtained by the laser scanning tomography and assessed the relationship between RNFLH measurements and optic and visual field status. Methods: Parameters of optic nerve head topography and RNFLH were evaluated in 125 eyes of 21 healthy subjects and 104 patients with glaucoma using the Heidelberg Retina Tomograph ([HRT] Heidelberg Engineering GmbH, Heidelberg, Germany) for the entire disc area and for the superior 70°(50°temporal and 20°nasal to the vertical midline) and inferior 70°sectors of the optic disc. The mean deviation of the visual field, as determined by the Humphrey program 24-2 (Humphrey Instruments, Inc., San Leonardo, CA, U.S.A) was calculated in the entire field and in the superior and inferior Bjerrum area. Result: Retinal nerve fiber layer height parameters (mean RNFLH and RNFL cross-sectional area) were decreased significantly in patients with glaucoma compared with healthy individuals. Retinal nerve fiber layer height parameters was correlated strongly with rim volume, rim area, and cup/disc area ratio. Of the various topography measures, retinal nerve fiber layer (RNFL) parameters and cup/disc area ratio showed the strongest correlation with visual field mean deviation in patients with glaucoma. Conclusion: Retinal nerve fiber layer height measures were reduced substantially in patients with glaucoma compared with age-matched healthy subjects. Retinal nerve fiber layer height was correlated strongly with topographic optic disc parameters and visual field changes in patients with glaucoma.
Resumo:
Objective: Acquired pit-like changes of the optic nerve head (APON) are characteristic of glaucomatous damage and may be a sign of a localized susceptibility of the optic nerve. Thus, it is possible that biomechanical properties of the ocular tissues may play a pressure-independent role in the pathogenesis of glaucoma. Corneal hysteresis (CH) appears to provide information of the biomechanical properties of the ocular hull tissues. The purpose of this study was to compare CH of patients with primary open angle glaucoma (POAG) with and without APON. Methods: A prospective case control study was done. POAG patients with and without APON were measured using the Ocular Response Analyzer by masked investigators. Patients in both groups were matched for sex, age, corneal thickness, and type of glaucoma according to maximal IOP (NTG or POAG). Statistical analysis was done using ANOVA. Results: Corneal hysteresis of 16 glaucomatous eyes with APON and 32 controls (glaucoma without APON) was measured. The mean (±SD) CH in the APON group was 8.89 (±1.53) and 10.2 (±1.05) in the control group. The difference is statistically significant (p = 0.005). Conclusions: Corneal hysteresis in POAG patients with APON was significantly lower than in patients that did not have such structural changes of the optic disc. These findings may reflect pressure-independent mechanisms involved in the pathogenesis of such glaucomatous optic nerve changes. © Springer-Verlag 2007.
Resumo:
The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.
Resumo:
A precise knowledge of the sources of the arterial and neural supply of the sternohyoid (SH), sternothyroid (STM), and superior belly of omohyoid (OM) is of value to surgeons using the infrahyoid muscles in reconstruction procedures of the head and neck. This study was designed to define the anatomical bases of the variable sources of the arterial and neural supply of these muscles. Fourteen cadavers were unilaterally dissected in the neck region, and the arterial pedicles of these muscles were followed and accurate measurements were taken. For the SH, two arterial pedicles (superior and inferior) originated from the superior thyroid artery ST and supplied the muscle in 57.1% of cases. The inferior pedicle was absent in 42.9% of cases. As regards the STM, one arterial pedicle from the ST supplied its upper end by multiple branches in 57.1% of cases. In 14.3% of cases, branches from the inferior thyroid artery (IT) supplied the STM in addition to its supply from the ST. As regards the OM, two arterial pedicles originated from the ST and supplied its upper and lower ends in 57.1% of cases. The main artery from the ST to the superior belly of OM entered at its superior portion. The ansa cervicalis (AC) innervated the infrahyoid muscles. SH usually had a double nerve supply. In 57.1% of cases, its superior part was innervated by the nerve to the superior belly of OM. Its inferior part received branches from the AC. In 35.7% of cases, its superior part received direct branches from the AC. As regards the STM, in (71.4%) of cases, a common trunk arose from the loop and supplied the inferior part of both the SH and STM. The nerve supply to the superior belly of OM originated from the AC below the loop in 64.3% of cases. These data will be useful for preserving the neuro-vascular supply of the infrahyoid muscles during flap preparation.
Resumo:
Adverse conditions prenatally increase the risk of cardiovascular disease, including hypertension. Chronic hypoxia in utero (CHU) causes endothelial dysfunction, but whether sympathetic vasoconstrictor nerve functioning is altered is unknown. We, therefore, compared in male CHU and control (N) rats muscle sympathetic nerve activity, vascular sympathetic innervation density, and mechanisms of sympathetic vasoconstriction. In young (Y)-CHU and Y-N rats (≈3 months), baseline arterial blood pressure was similar. However, tonic muscle sympathetic nerve activity recorded focally from arterial vessels of spinotrapezius muscle had higher mean frequency in Y-CHU than in Y-N rats (0.56±0.075 versus 0.33±0.036 Hz), and the proportions of single units with high instantaneous frequencies (1–5 and 6–10 Hz) being greater in Y-CHU rats. Sympathetic innervation density of tibial arteries was ≈50% greater in Y-CHU than in Y-N rats. Increases in femoral vascular resistance evoked by sympathetic stimulation at low frequency (2 Hz for 2 minutes) and bursts at 20 Hz were substantially smaller in Y-CHU than in Y-N rats. In Y-N only, the neuropeptide Y Y1-receptor antagonist BIBP3226 attenuated these responses. By contrast, baseline arterial blood pressure was higher in middle-aged (M)-CHU than in M-N rats (≈9 months; 139±3 versus 126±3 mmHg, respectively). BIBP3226 had no effect on femoral vascular resistance increases evoked by 2 Hz or 20 Hz bursts in M-N or M-CHU rats. These results indicate that fetal programming induced by prenatal hypoxia causes an increase in centrally generated muscle sympathetic nerve activity in youth and hypertension by middle age. This is associated with blunting of sympathetically evoked vasoconstriction and its neuropeptide Y component that may reflect premature vascular aging and contribute to increased risk of cardiovascular disease
Resumo:
Background: Sensory neurones from the trigeminal nerve innervate the oro-facial region and teeth. Transient receptor potential channels (TRPs) expressed by these neurones are responsible for relaying sensory information such as changes in ambient temperature, mechanical sensations and pain. Study of TRP channel expression and regulation in human sensory neurones therefore merits investigation to improve our understanding of allodynia and hyperalgesia. Objective: The objective of this study was to differentiate human dental pulp stem cells (hDPSCs) towards a neuronal phenotype (peripheral neuronal equivalents; PNEs) and employ this model to study TRP channel sensitisation. Method: hDPSCs were enriched by preferential adhesion to fibronectin, plated on coverslips (thickness 0) coated with poly-l-ornithine and laminin and then differentiated for 7 days in neurobasal A medium with additional supplementation. A whole cell patch clamp technique was used to investigate whether TRP channels on PNE membranes were modulated in the presence of nerve growth factor (NGF). PNEs were treated with NGF for 20 minutes immediately before experimentation and then stimulated for TRPA1 activity using cinnamaldehyde. Peak currents were read at 80 mV and -80 mV and compared to peak currents recorded in untreated PNEs. Data were analysed and plotted using Clampfit9 software (Molecular Devices, Sunnyvale, California, USA). Result: Results showed for the first time that pre-treatment of PNEs by NGF produced significantly larger inward and outward currents demonstrating that TRPA1 channels on PNE membranes were capable of becoming sensitised following treatment with NGF. Conclusion: Sensitisation of TRPA1 by NGF provides evidence of a mechanism for rapid neuronal sensitisation that is independent of TRPA1 gene expression