967 resultados para satellite data processing
Resumo:
Estuaries are perhaps the most threatened environments in the coastal fringe; the coincidence of high natural value and attractiveness for human use has led to conflicts between conservation and development. These conflicts occur in the Sado Estuary since its location is near the industrialised zone of Peninsula of Setúbal and at the same time, a great part of the Estuary is classified as a Natural Reserve due to its high biodiversity. These facts led us to the need of implementing a model of environmental management and quality assessment, based on methodologies that enable the assessment of the Sado Estuary quality and evaluation of the human pressures in the estuary. These methodologies are based on indicators that can better depict the state of the environment and not necessarily all that could be measured or analysed. Sediments have always been considered as an important temporary source of some compounds or a sink for other type of materials or an interface where a great diversity of biogeochemical transformations occur. For all this they are of great importance in the formulation of coastal management system. Many authors have been using sediments to monitor aquatic contamination, showing great advantages when compared to the sampling of the traditional water column. The main objective of this thesis was to develop an estuary environmental management framework applied to Sado Estuary using the DPSIR Model (EMMSado), including data collection, data processing and data analysis. The support infrastructure of EMMSado were a set of spatially contiguous and homogeneous regions of sediment structure (management units). The environmental quality of the estuary was assessed through the sediment quality assessment and integrated in a preliminary stage with the human pressure for development. Besides the earlier explained advantages, studying the quality of the estuary mainly based on the indicators and indexes of the sediment compartment also turns this methodology easier, faster and human and financial resource saving. These are essential factors to an efficient environmental management of coastal areas. Data management, visualization, processing and analysis was obtained through the combined use of indicators and indices, sampling optimization techniques, Geographical Information Systems, remote sensing, statistics for spatial data, Global Positioning Systems and best expert judgments. As a global conclusion, from the nineteen management units delineated and analyzed three showed no ecological risk (18.5 % of the study area). The areas of more concern (5.6 % of the study area) are located in the North Channel and are under strong human pressure mainly due to industrial activities. These areas have also low hydrodynamics and are, thus associated with high levels of deposition. In particular the areas near Lisnave and Eurominas industries can also accumulate the contamination coming from Águas de Moura Channel, since particles coming from that channel can settle down in that area due to residual flow. In these areas the contaminants of concern, from those analyzed, are the heavy metals and metalloids (Cd, Cu, Zn and As exceeded the PEL guidelines) and the pesticides BHC isomers, heptachlor, isodrin, DDT and metabolits, endosulfan and endrin. In the remain management units (76 % of the study area) there is a moderate impact potential of occurrence of adverse ecological effects and in some of these areas no stress agents could be identified. This emphasizes the need for further research, since unmeasured chemicals may be causing or contributing to these adverse effects. Special attention must be taken to the units with moderate impact potential of occurrence of adverse ecological effects, located inside the natural reserve. Non-point source pollution coming from agriculture and aquaculture activities also seem to contribute with important pollution load into the estuary entering from Águas de Moura Channel. This pressure is expressed in a moderate impact potential for ecological risk existent in the areas near the entrance of this Channel. Pressures may also came from Alcácer Channel although they were not quantified in this study. The management framework presented here, including all the methodological tools may be applied and tested in other estuarine ecosystems, which will also allow a comparison between estuarine ecosystems in other parts of the globe.
Resumo:
Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.
Resumo:
Although the Navigation Satellite Timing and Ranging (NAVSTAR) Global Positioning System (GPS) is, de facto, the standard positioning system used in outdoor navigation, it does not provide, per se, all the features required to perform many outdoor navigational tasks. The accuracy of the GPS measurements is the most critical issue. The quest for higher position readings accuracy led to the development, in the late nineties, of the Differential Global Positioning System (DGPS). The differential GPS method detects the range errors of the GPS satellites received and broadcasts them. The DGPS/GPS receivers correlate the DGPS data with the GPS satellite data they are receiving, granting users increased accuracy. DGPS data is broadcasted using terrestrial radio beacons, satellites and, more recently, the Internet. Our goal is to have access, within the ISEP campus, to DGPS correction data. To achieve this objective we designed and implemented a distributed system composed of two main modules which are interconnected: a distributed application responsible for the establishment of the data link over the Internet between the remote DGPS stations and the campus, and the campus-wide DGPS data server application. The DGPS data Internet link is provided by a two-tier client/server distributed application where the server-side is connected to the DGPS station and the client-side is located at the campus. The second unit, the campus DGPS data server application, diffuses DGPS data received at the campus via the Intranet and via a wireless data link. The wireless broadcast is intended for DGPS/GPS portable receivers equipped with an air interface and the Intranet link is provided for DGPS/GPS receivers with just a RS232 DGPS data interface. While the DGPS data Internet link servers receive the DGPS data from the DGPS base stations and forward it to the DGPS data Internet link client, the DGPS data Internet link client outputs the received DGPS data to the campus DGPS data server application. The distributed system is expected to provide adequate support for accurate (sub-metric) outdoor campus navigation tasks. This paper describes in detail the overall distributed application.
Resumo:
Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.
Resumo:
Nowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Optimization of fMRI Processing Parameters for Simutaneous Acquisition of EEG/fMRI in Focal Epilepsy
Resumo:
In the context of focal epilepsy, the simultaneous combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) holds a great promise as a technique by which the hemodynamic correlates of interictal spikes detected on scalp EEG can be identified. The fact that traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the lobes, brings the need of mapping with more precision the epileptogenic cortical regions. On the other hand, fMRI suggested localizations more consistent with the ictal clinical manifestations detected. This study was developed in order to improve the knowledge about the way parameters involved in the physical and mathematical data, produced by the EEG/fMRI technique processing, would influence the final results. The evaluation of the accuracy was made by comparing the BOLD results with: the high resolution EEG maps; the malformative lesions detected in the T1 weighted MR images; and the anatomical localizations of the diagnosed symptomatology of each studied patient. The optimization of the set of parameters used, will provide an important contribution to the diagnosis of epileptogenic focuses, in patients included on an epilepsy surgery evaluation program. The results obtained allowed us to conclude that: by associating the BOLD effect with interictal spikes, the epileptogenic areas are mapped to localizations different from those obtained by the EEG maps representing the electrical potential distribution across the scalp (EEG); there is an important and solid bond between the variation of particular parameters (manipulated during the fMRI data processing) and the optimization of the final results, from which smoothing, deleted volumes, HRF (used to convolve with the activation design), and the shape of the Gamma function can be certainly emphasized.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The data acquisition process in real-time is fundamental to provide appropriate services and improve health professionals decision. In this paper a pervasive adaptive data acquisition architecture of medical devices (e.g. vital signs, ventilators and sensors) is presented. The architecture was deployed in a real context in an Intensive Care Unit. It is providing clinical data in real-time to the INTCare system. The gateway is composed by several agents able to collect a set of patients’ variables (vital signs, ventilation) across the network. The paper shows as example the ventilation acquisition process. The clients are installed in a machine near the patient bed. Then they are connected to the ventilators and the data monitored is sent to a multithreading server which using Health Level Seven protocols records the data in the database. The agents associated to gateway are able to collect, analyse, interpret and store the data in the repository. This gateway is composed by a fault tolerant system that ensures a data store in the database even if the agents are disconnected. The gateway is pervasive, universal, and interoperable and it is able to adapt to any service using streaming data.
Resumo:
There are far-reaching conceptual similarities between bi-static surface georadar and post-stack, "zero-offset" seismic reflection data, which is expressed in largely identical processing flows. One important difference is, however, that standard deconvolution algorithms routinely used to enhance the vertical resolution of seismic data are notoriously problematic or even detrimental to the overall signal quality when applied to surface georadar data. We have explored various options for alleviating this problem and have tested them on a geologically well-constrained surface georadar dataset. Standard stochastic and direct deterministic deconvolution approaches proved to be largely unsatisfactory. While least-squares-type deterministic deconvolution showed some promise, the inherent uncertainties involved in estimating the source wavelet introduced some artificial "ringiness". In contrast, we found spectral balancing approaches to be effective, practical and robust means for enhancing the vertical resolution of surface georadar data, particularly, but not exclusively, in the uppermost part of the georadar section, which is notoriously plagued by the interference of the direct air- and groundwaves. For the data considered in this study, it can be argued that band-limited spectral blueing may provide somewhat better results than standard band-limited spectral whitening, particularly in the uppermost part of the section affected by the interference of the air- and groundwaves. Interestingly, this finding is consistent with the fact that the amplitude spectrum resulting from least-squares-type deterministic deconvolution is characterized by a systematic enhancement of higher frequencies at the expense of lower frequencies and hence is blue rather than white. It is also consistent with increasing evidence that spectral "blueness" is a seemingly universal, albeit enigmatic, property of the distribution of reflection coefficients in the Earth. Our results therefore indicate that spectral balancing techniques in general and spectral blueing in particular represent simple, yet effective means of enhancing the vertical resolution of surface georadar data and, in many cases, could turn out to be a preferable alternative to standard deconvolution approaches.
Resumo:
A 0.125 degree raster or grid-based Geographic Information System with data on tsetse, trypanosomosis, animal production, agriculture and land use has recently been developed in Togo. This paper addresses the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. A discriminant analysis model is tested using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration and Meteosat platforms. A split sample technique is adopted where a randomly selected part of the field measured data (training set) serves to predict the other part (predicted set). The obtained results are then compared with field measured data per corresponding grid-square. Depending on the size of the training set the percentage of concording predictions varies from 80 to 95 for distribution figures and from 63 to 74 for abundance. These results confirm the potential of satellite data application and multivariate analysis for the prediction, not only of the tsetse distribution, but more importantly of their abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen or substitute one another and thus reduce costs of field surveys.
Resumo:
Configuració d'un entorn de desenvolupament en el IDE Eclipse. Introducció als SIG. Usos, utilitats i exemples. Conèixer la eina gvSIG. Conèixer els estàndards més estesos de l'Open Geospatial Consortium (OGC) i en especial del Web Processing Services. Analitzar, dissenyar i desenvolupar un client capaç de consumir serveis wps.
Resumo:
L'objectiu d'aquest projecte és connectar el sintonitzador de televisió per satèl·lit Dreambox 7000S amb el Nokia 770 Internet Tablet. El propòsit d'aquesta aplicació és utilitzar el Dreambox 7000S com una font de streaming mpeg2 i el Nokia 770 com a reproductor portàtil.
Resumo:
Estudi dels estàndards definits per l'Open Geospatial Consortium, i més concretament en l'estàndard Web Processing Service (wps). Així mateix, ha tingut una component pràctica que ha consistit en el disseny i desenvolupament d'un client capaç de consumir serveis Web creats segons wps i integrat a la plataforma gvSIG.
Resumo:
The sparsely spaced highly permeable fractures of the granitic rock aquifer at Stang-er-Brune (Brittany, France) form a well-connected fracture network of high permeability but unknown geometry. Previous work based on optical and acoustic logging together with single-hole and cross-hole flowmeter data acquired in 3 neighbouring boreholes (70-100 m deep) has identified the most important permeable fractures crossing the boreholes and their hydraulic connections. To constrain possible flow paths by estimating the geometries of known and previously unknown fractures, we have acquired, processed and interpreted multifold, single- and cross-hole GPR data using 100 and 250 MHz antennas. The GPR data processing scheme consisting of timezero corrections, scaling, bandpass filtering and F-X deconvolution, eigenvector filtering, muting, pre-stack Kirchhoff depth migration and stacking was used to differentiate fluid-filled fracture reflections from source generated noise. The final stacked and pre-stack depth-migrated GPR sections provide high-resolution images of individual fractures (dipping 30-90°) in the surroundings (2-20 m for the 100 MHz antennas; 2-12 m for the 250 MHz antennas) of each borehole in a 2D plane projection that are of superior quality to those obtained from single-offset sections. Most fractures previously identified from hydraulic testing can be correlated to reflections in the single-hole data. Several previously unknown major near vertical fractures have also been identified away from the boreholes.
Resumo:
BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.