835 resultados para sampling methodology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays despite improvements in usability and intuitiveness users have to adapt to the proposed systems to satisfy their needs. For instance, they must learn how to achieve tasks, how to interact with the system, and fulfill system's specifications. This paper proposes an approach to improve this situation enabling graphical user interface redefinition through virtualization and computer vision with the aim of increasing the system's usability. To achieve this goal the approach is based on enriched task models, virtualization and picture-driven computing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study carried out in order to evaluate the students' perception in the development and use of remote Control and Automation education kits developed by two Universities. Three projects, based on real world environments, were implemented, being local and remotely operated. Students implemented the kits using the theoretical and practical knowledge, being the teachers a catalyst in the learning process. When kits were operational, end-user students got acquainted to the kits in the course curricula units. It is the author's believe that successful results were achieved not only in the learning progress on the Automation and Control fields (hard skills) but also on the development of the students soft skills, leading to encouraging and rewarding goals, motivating their future decisions and promoting synergies in their work. The design of learning experimental kits by students, under teacher supervision, for future use in course curricula by enduser students is an advantageous and rewarding experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current level of demand by customers in the electronics industry requires the production of parts with an extremely high level of reliability and quality to ensure complete confidence on the end customer. Automatic Optical Inspection (AOI) machines have an important role in the monitoring and detection of errors during the manufacturing process for printed circuit boards. These machines present images of products with probable assembly mistakes to an operator and him decide whether the product has a real defect or if in turn this was an automated false detection. Operator training is an important aspect for obtaining a lower rate of evaluation failure by the operator and consequently a lower rate of actual defects that slip through to the following processes. The Gage R&R methodology for attributes is part of a Six Sigma strategy to examine the repeatability and reproducibility of an evaluation system, thus giving important feedback on the suitability of each operator in classifying defects. This methodology was already applied in several industry sectors and services at different processes, with excellent results in the evaluation of subjective parameters. An application for training operators of AOI machines was developed, in order to be able to check their fitness and improve future evaluation performance. This application will provide a better understanding of the specific training needs for each operator, and also to accompany the evolution of the training program for new components which in turn present additional new difficulties for the operator evaluation. The use of this application will contribute to reduce the number of defects misclassified by the operators that are passed on to the following steps in the productive process. This defect reduction will also contribute to the continuous improvement of the operator evaluation performance, which is seen as a quality management goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LUDA is a research project of Key Action 4 "City of Tomorrow & Cultural Heritage" of the programme "Energy, Environment and Sustainable Development" within the Fifth Framework Programme of the European Commission

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, most individuals spend about 80% of their time indoor and, consequently, the exposure to the indoor environment becomes more relevant than to the outdoor one. Children spend most of their time at home and at school and evaluations of their indoor environment are important for the time-weighted exposure. Due to their airways still in development, children are a sensitive group with higher risk than adults. Larger impact in health and educational performance of children demand indoor air quality studies of schools. The aim of this study was to assess the children exposure to bioaerosols. A methodology based upon passive sampling was applied to evaluate fungi, bacteria and pollens; its procedures and applicability was optimized. An indoor air study by passive sampling represents an easier and cheaper method when comparing with the use of automatic active samplers. Furthermore, it is possible to achieve important quality information without interfering in the classroom activities. The study was conducted in three schools, representative of different environments in the Lisbon urban area, at three different periods of the year to obtain a seasonal variation, to estimate the variability through the city and to understand the underneath causes. Fungi and bacteria were collected indoor and outdoor of the classrooms to determine the indoor/outdoor ratios and to assess the level of outdoor contamination upon the indoor environment. The children's exposure to pollen grains inside the classrooms was also assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Cheese should be produced from ingredients of good quality and processed under hygienic conditions. Further, cheese should be transported, stored and sold in an appropriate manner in order to avoid, among other things, the incorporation of extraneous materials (filth) of biological origin or otherwise, in contravention of the relevant food legislation. The aim of the study was to evaluate the hygienic conditions of "prato", "mussarela", and "mineiro" cheeses sold at the street food markets in the city of S. Paulo, Brazil. MATERIALS AND METHOD: Forty-seven samples of each of the three types of cheese were collected during the period from March, 1993 to February, 1994. The Latin square was used as a statistical model for sampling and random selection of the street markets from which to collect the cheese samples. The samples were analysed for the presence of extraneous matters outside for which purpose the samples were washed and filtered and inside, for which the methodology of enzymathic digestion of the sample with pancreatine, followed by filtering,was used. RESULTS AND CONCLUSION: Of the 141 samples analysed, 75.9% exhibited at least one sort of extraneous matters. For the "prato" and "mussarela" cheeses, the high number of contaminated samples was due mainly to extraneous matters present inside the cheese, whereas in the "mineiro" cheese, besides the internal filth, 100% of the samples had external filth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collaborative networks are typically formed by heterogeneous and autonomous entities, and thus it is natural that each member has its own set of core-values. Since these values somehow drive the behaviour of the involved entities, the ability to quickly identify partners with compatible or common core-values represents an important element for the success of collaborative networks. However, tools to assess or measure the level of alignment of core-values are lacking. Since the concept of 'alignment' in this context is still ill-defined and shows a multifaceted nature, three perspectives are discussed. The first one uses a causal maps approach in order to capture, structure, and represent the influence relationships among core-values. This representation provides the basis to measure the alignment in terms of the structural similarity and influence among value systems. The second perspective considers the compatibility and incompatibility among core-values in order to define the alignment level. Under this perspective we propose a fuzzy inference system to estimate the alignment level, since this approach allows dealing with variables that are vaguely defined, and whose inter-relationships are difficult to define. Another advantage provided by this method is the possibility to incorporate expert human judgment in the definition of the alignment level. The last perspective uses a belief Bayesian network method, and was selected in order to assess the alignment level based on members' past behaviour. An example of application is presented where the details of each method are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular. Área de Especialização: Ultrassonografia Cardiovascular

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are complex and diverse methodological problems involved in the clinical and epidemiological study of respiratory diseases and their etiological factors. The association of urban growth, industrialization and environmental deterioration with respiratory diseases makes it necessary to pay more attention to this research area with a multidisciplinary approach. Appropriate study designs and statistical techniques to analyze and improve our understanding of the pathological events and their causes must be implemented to reduce the growing morbidity and mortality through better preventive actions and health programs. The objective of the article is to review the most common methodological problems in this research area and to present the most available statistical tools used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The very particular characteristics of electricity markets, require deep studies of the interactions between the involved players. MASCEM is a market simulator developed to allow studying electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is implemented as a multiagent system, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. This paper also presents a methodology to define players’ models based on the historic of their past actions, interpreting how their choices are affected by past experience, and competition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology based on data mining techniques to support the analysis of zonal prices in real transmission networks is proposed in this paper. The mentioned methodology uses clustering algorithms to group the buses in typical classes that include a set of buses with similar LMP values. Two different clustering algorithms have been used to determine the LMP clusters: the two-step and K-means algorithms. In order to evaluate the quality of the partition as well as the best performance algorithm adequacy measurements indices are used. The paper includes a case study using a Locational Marginal Prices (LMP) data base from the California ISO (CAISO) in order to identify zonal prices.