985 resultados para root tissue density
Resumo:
Trisomy 13 was detected in 10% of mouse embryos obtained from pregnant females which were doubly heterozygous for Robertsonian chromosomes involving chromosome 13. The developing dorsal root ganglia and spinal cords were examined in trisomy 13 and littermate control mice between days 12 and 18 of gestation (E12-18). The overall size of the dorsal root ganglia and number of ganglion cells within a given ganglion were not altered, but the number of neurons immunoreactive for calbindin and calretinin was reduced. The trisomic spinal cord was reduced in size with neurons lying in a tightly compact distribution in the gray matter. In trisomic fetuses, the extent of the neuropil of the spinal cord was reduced, and may represent a diminished field of interneuronal connectivity, due to reduced arborization of dendritic processes of the neurons present, particularly of calbindin-immunostained neurons. Furthermore, the subpopulation of calretinin-immunoreactive neurons and axons was also reduced in developing trisomic gray and white matter, respectively. Thus, overexpression of genes on mouse chromosome 13 exerts a deleterious effect on the development of neuropil, affecting both dendritic and axonal arborization in the trisomy 13 mouse. The defect of calbindin or calretinin expression by subsets of dorsal root ganglion or spinal cord neurons may result from deficient cell-to-cell interactions with targets which are hypoplastic.
Resumo:
High-density lipoproteins (HDLs) exert a series of potentially beneficial effects on many cell types including anti-atherogenic actions on the endothelium and macrophage foam cells. HDLs may also exert anti-diabetogenic functions on the beta cells of the endocrine pancreas, notably by potently inhibiting stress-induced cell death and enhancing glucose-stimulated insulin secretion. HDLs have also been found to stimulate insulin-dependent and insulin-independent glucose uptake into skeletal muscle, adipose tissue, and liver. These experimental findings and the inverse association of HDL-cholesterol levels with the risk of diabetes development have generated the notion that appropriate HDL levels and functionality must be maintained in humans to diminish the risks of developing diabetes. In this article, we review our knowledge on the beneficial effects of HDLs in pancreatic beta cells and how these effects are mediated. We discuss the capacity of HDLs to modulate endoplasmic reticulum stress and how this affects beta-cell survival. We also point out the gaps in our understanding on the signalling properties of HDLs in beta cells. Hopefully, this review will foster the interest of scientists in working on beta cells and diabetes to better define the cellular pathways activated by HDLs in beta cells. Such knowledge will be of importance to design therapeutic tools to preserve the proper functioning of the insulin-secreting cells in our body.
Resumo:
Beside the several growth factors which play a crucial role in the development and regeneration of the nervous system, thyroid hormones also contribute to the normal development of the central and peripheral nervous system. In our previous work, we demonstrated that triiodothyronine (T3) in physiological concentration enhances neurite outgrowth of primary sensory neurons in cultures. Neurite outgrowth requires microtubules and microtubule associated proteins (MAPs). Therefore the effects of exogenous T3 or/and nerve growth factors (NGF) were tested on the expression of cytoskeletal proteins in primary sensory neurons. Dorsal root ganglia (DRG) from 19 day old rat embryos were cultured under four conditions: (1) control cultures in which explants were grown in the absence of T3 and NGF, (2) cultures grown in the presence of NGF alone, (3) in the presence of T3 alone or (4) in the presence of NGF and T3 together. Analysis of proteins by SDS-polyacrylamide gel electrophoresis revealed the presence of several proteins in the molecular weight region around 240 kDa. NGF and T3 together induced the expression of one protein, in particular, with a molecular weight above 240 kDa, which was identified by an antibody against MAP1c, a protein also known as cytoplasmic dynein. The immunocytochemical detection confirmed that this protein was expressed only in DRG explants grown in the presence of NGF and T3 together. Neither control explants nor explants treated with either NGF or T3 alone expressed dynein. In conclusion, a combination of nerve growth factor and thyroid hormone is necessary to regulate the expression of cytoplasmic dynein, a protein that is involved in retrograde axonal transport.
Resumo:
Congenital malformations or injuries of the urethra can be treated using existing autologous tissue, but these procedures are sometimes associated with severe complications. Therefore, tissue engineering may be advantageous for generating urethral grafts. We evaluated engineered high-density collagen gel tubes as urethral grafts in 16 male New Zealand white rabbits. The constructs were either acellular or seeded with autologous smooth muscle cells, isolated from an open bladder biopsy. After the formation of a urethral defect by excision, the tissue-engineered grafts were interposed between the remaining urethral ends. No catheter was placed postoperatively. The animals were evaluated at 1 or 3 months by contrast urethrography and histological examination. Comparing the graft caliber to the control urethra at 3 months, a larger caliber was found in the cell-seeded grafts (96.6% of the normal caliber) than in the acellular grafts (42.3%). Histology of acellular and cell-seeded grafts did not show any sign of inflammation, and spontaneous regrowth of urothelium could be demonstrated in all grafts. Urethral fistulae, sometimes associated with stenosis, were observed, which might be prevented by urethral catheter application. High-density collagen gel tubes may be clinically useful as an effective treatment of congenital and acquired urethral pathologies.
Resumo:
BACKGROUND: The envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV) can efficiently pseudotype lentiviral vectors. Some strains of LCMV exploit high affinity interactions with α-dystroglycan (α-DG) to bind to cell surfaces and subsequently fuse in low pH endosomes. LCMV strains with low α-DG affinity utilize an unknown receptor and display unique tissue tropisms. We pseudotyped non-primate feline immunodeficiency virus (FIV) vectors using LCMV derived glycoproteins with high or low affinity to α-DG and evaluated their properties in vitro and in vivo. METHODS: We pseudotyped FIV with the LCMV WE54 strain envelope glycoprotein and also engineered a point mutation in the WE54 envelope glycoprotein (L260F) to diminish α-DG affinity and direct binding to alternate receptors. We hypothesized that this change would alter in vivo tissue tropism and enhance gene transfer to neonatal animals. RESULTS: In mice, hepatic α- and β-DG expression was greatest at the late gestational and neonatal time points. When displayed on the surface of the FIV lentivirus the WE54 L260F mutant glycoprotein bound weakly to immobilized α-DG. Additionally, LCMV WE54 pseudotyped FIV vector transduction was neutralized by pre-incubation with soluble α-DG, while the mutant glycoprotein pseudotyped vector was not. In vivo gene transfer in adult mice with either envelope yielded low transduction efficiencies in hepatocytes following intravenous delivery. In marked contrast, neonatal gene transfer with the LCMV envelopes, and notably with the FIV-L260F vector, conferred abundant liver and lower level cardiomyocyte transduction as detected by luciferase assays, bioluminescent imaging, and β-galactosidase staining. CONCLUSIONS: These results suggest that a developmentally regulated receptor for LCMV is expressed abundantly in neonatal mice. LCMV pseudotyped vectors may have applications for neonatal gene transfer. ABBREVIATIONS: Armstrong 53b (Arm53b); baculovirus Autographa californica GP64 (GP64); charge-coupled device (CCD); dystroglycan (DG); feline immunodeficiency virus (FIV); glycoprotein precursor (GP-C); firefly luciferase (Luc); lymphocytic choriomeningitis virus (LCMV); nuclear targeted β-galactosidase (ntLacZ); optical density (OD); PBS/0.1% (w/v) Tween-20 (PBST); relative light units (RLU); Rous sarcoma virus (RSV); transducing units per milliliter (TU/ml); vesicular stomatitis virus (VSV-G); wheat germ agglutinin (WGA); 50% reduction in binding (C50).
Resumo:
Osteoporosis (OP) is a systemic skeletal disease characterized by a low bone mineral density (BMD) and a micro-architectural (MA) deterioration. Clinical risk factors (CRF) are often used as a MA approximation. MA is yet evaluable in daily practice by the trabecular bone score (TBS) measure. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis values, partially independent of CRF and BMD. The aim of the OsteoLaus cohort is to combine in daily practice the CRF and the information given by DXA (BMD, TBS and vertebral fracture assessment (VFA)) to better identify women at high fracture risk. The OsteoLaus cohort (1400 women 50 to 80 years living in Lausanne, Switzerland) started in 2010. This study is derived from the cohort COLAUS who started in Lausanne in 2003. The main goal of COLAUS is to obtain information on the epidemiology and genetic determinants of cardiovascular risk in 6700 men and women. CRF for OP, bone ultrasound of the heel, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded in OsteoLaus. Preliminary results are reported. We included 631 women: mean age 67.4 ± 6.7 years, BMI 26.1 ± 4.6, mean lumbar spine BMD 0.943 ± 0.168 (T-score − 1.4 SD), and TBS 1.271 ± 0.103. As expected, correlation between BMD and site matched TBS is low (r2 = 0.16). Prevalence of VFx grade 2/3, major OP Fx and all OP Fx is 8.4%, 17.0% and 26.0% respectively. Age- and BMI-adjusted ORs (per SD decrease) are 1.8 (1.2-2.5), 1.6 (1.2-2.1), and 1.3 (1.1-1.6) for BMD for the different categories of fractures and 2.0 (1.4-3.0), 1.9 (1.4-2.5), and 1.4 (1.1-1.7) for TBS respectively. Only 32 to 37% of women with OP Fx have a BMD < − 2.5 SD or a TBS < 1.200. If we combine a BMD < − 2.5 SD or a TBS < 1.200, 54 to 60% of women with an osteoporotic Fx are identified. As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS subsequent to BMD increases significantly the identification of women with prevalent OP Fx which would have been misclassified by BMD alone. For the first time we are able to have complementary information about fracture (VFA), density (BMD), micro- and macro architecture (TBS and HAS) from a simple, low ionizing radiation and cheap device: DXA. Such complementary information is very useful for the patient in the daily practice and moreover will likely have an impact on cost effectiveness analysis.
Resumo:
Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.
Resumo:
This study aimed to evaluate the growth of plants and the precocity of strawberry production under different root pruning intensities at planting time. Bare roots plants with 12 millimeters crown diameter produced in nurseries from the Patagonia region, Argentina were used. The planting was carried out on May 12th 2010 into experimental plots with non-fumigated soil. The treatments consisted of three cultivars (Camarosa, Florida Festival and Camino Real) and three pruning intensities (1/3, 2/3 and no pruning) on the total root length of the plants. The experimental design used was a randomized block design in a 3x3 factorial arrangement with three replications and 12 plants per plot and density of 11.1 plants m-2. Mature fruits were harvested from July 15th to December 14th 2010 and the production of fresh fruit was determined. There was no significative interaction between cultivars and pruning intensity. 'Camarosa' and 'Florida Festival' plants showed precocity and had the most abundant and heavier fruits during the precocity period. The different root pruning intensities did not affect the assessed variables. It was concluded that, in order to facilitate strawberry planting of the cultivars Camarosa, Florida Festival and Camino Real root pruning is possible, with no damages on plant growth and development, precocity and early fruit production.
Resumo:
Among all inflammatory cells involved in COPD, those with a cytolytic or elastolytic activity are thought to play a key role in the pathogenesis of the disease. However, there is no data about the infiltration of cells expressing the CD57 marker in small airways and parenchyma of COPD patients. In this study, surgical specimens from 43 subjects undergoing lung resection due to lung cancer (9 non-smokers, 18 smokers without COPD and 16 smokers with moderate COPD) and 16 patients undergoing double lung transplantation for very severe COPD were examined. CD57+ cells, neutrophils, macrophages and mast cells infiltrating bronchioles (epithelium, smooth muscle and connective tissue) and parenchymal interstitium were localized and quantified by immunohistochemical analysis. Compared to the other groups, the small airways of very severe COPD patients showed a significantly higher density of CD57+ cells, mainly infiltrated in the connective tissue (p=0.001), and a significantly higher density of neutrophils located characteristically in the epithelium (p=0.037). Also, the density of neutrophils was significantly higher in parenchyma of very severe COPD patients compared with the rest of the groups (p=0.001). Finally, there were significant correlations between the bronchiolar density of CD57+ cells and the FEV1 values (R=-0.43, p=0.022), as well as between the parenchymal density of neutrophils and macroscopic emphysema degree (R=0.43, p=0.048) in COPD groups. These results show that CD57+ cells may be involved in COPD pathogenesis, especially in the most severe stages of the disease.
Resumo:
The endodermis is a highly conserved cell layer present in the root of all vascular plants, except Lycophytes. This tissue layer establishes a protective diffusion barrier surrounding the vasculature and is expected to prevent passive, uncontrolled flow of nutrients through the root. This barrier property is achieved by the production of Casparian strips (CS), a localized cell wall impregnation of lignin in the anticlinal walls of each endodermal cell, forming a belt-like structure sealing the extracellular space. The CS act as a selective barrier between the external cell layers and the vascular cylinder and are thought to be important in many aspects of root function. For instance, selective nutrient uptake and sequestration from the soil, resistance to different abiotic and biotic stresses are expected to involve functional CS. Although discovered 150 years ago, nothing was known about the genes involved in CS establishment until recently. The use of the model plant Arabidopsis thaliana together with both reverse and forward genetic approaches led to the discovery of an increasing number of genes involved in different steps of CS formation during the last few years. One of these genes encodes SCHENGEN3 (SGN3), a leucine-rich repeat receptor-like kinase (LRR-RLK). SGN3 was discovered first by reverse genetic due to its endodermis-enriched expression, and the corresponding mutant displays strong endodermal permeability of the apoplastic tracer Propidium Iodide (PI) indicative of defective CS. One aim of this thesis is to study the role of SGN3 at the molecular level in order to understand its involvement in establishing an impermeable CS. The endodermal permeability of sgn3 is shown to be the result of incorrect localization of key proteins involved in CS establishment (the "Casparian strip domain proteins", CASPs), leading to non-functional CS interrupted by discontinuities. CASPs localize in the plasma membrane domain subjacent to the CS, named the Casparian Strip membrane Domain (CSD). The CSD discontinuities in sgn3 together with SGN3 localization in close proximity to the CASPs lead to the assumption that SGN3 is involved in the formation of a continuous CSD. In addition, SGN3 might have a second role, acting as a kinase reporting CSD integrity leading to lignin and suberin production in CSD/CS defective plants. Up to now, sgn3 is the strongest and most specific CS mutant available, displaying tracer penetration along the whole length of the seedling root. For this reason, this mutant is well suited in order to characterize the physiological behaviour of CS affected plants. Due to the lack of such mutants in the past, it was not possible to test the presumed functions of CS by using plants lacking this structure. We decided to use sgn3 for this purpose. Surprisingly, sgn3 overall growth is only slightly affected. Nevertheless, processes expected to rely on functional CS, such as water transport through the root, nutrient homeostasis, salt tolerance and resistance to an excess of some nutrients are altered in this mutant. On the other hand, homeostasis for most elements and drought tolerance are not affected in sgn3. It is surprising to observe that homeostatic defects are specific, with a decrease in potassium and an increase in magnesium levels. It indicates a backup system, set up by the plant in order to counteract free diffusion of nutrients into the stele. For instance, potassium shortage in sgn3 upregulates the transcription of potassium influx transport proteins and genes known to be induced by potassium starvation. Moreover, sgn3 mutant is hypersensitive to low potassium conditions. Hopefully, these results about SGN3 will help our understanding of CS establishment at the molecular level. In addition, physiological experiments using sgn3 should give us a framework for future experiments and help us to understand the different roles of CS and their involvement during nutrient radial transport through the root. -- L'endoderme est un tissu présent dans les racines de toutes les plantes vasculaires à l'exception des Lycophytes. Ce tissu établit une barrière protectrice entourant les tissus vasculaires dans le but d'éviter la diffusion passive et incontrôlée des nutriments au travers de la racine. Cette propriété de barrière provient de la production des cadres de Caspary, une imprégnation localisée de lignine des parties anticlinales de la paroi de chaque cellule d'endoderme. Cela donne naissance à un anneau/cadre qui rend étanche l'espace extracellulaire. Les cadres de Caspary agissent comme une barrière sélective entre les couches externes de la racine et le cylindre central et sont supposés être importants dans beaucoup d'aspects du fonctionnement de la racine. Par exemple, l'absorption sélective de nutriments et leur séquestration à partir du sol ainsi que la résistance contre différents stress abiotiques et biotiques sont supposés impliquer des cadres de Caspary fonctionnels. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans Ja formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana ainsi que des approches de génétique inverse et classique ont permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un des ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR-RLK). SGN3 a été découvert en premier par génétique inverse grâce à son expression enrichie dans l'endoderme. Les cadres de Caspary ne sont pas fonctionnels dans le mutant correspondant, ce qui est visible à cause de la perméabilité de l'endoderme au traceur apoplastique Propidium Iodide (PI). Un des objectifs de cette thèse est d'étudier la fonction de SGN3 au niveau moléculaire dans le but de comprendre son rôle dans la formation des cadres de Caspary. J'ai pu démontrer que la perméabilité de l'endoderme du mutant sgn3 est le résultat de la localisation incorrecte de protéines impliquées dans la formation des cadres de Caspary, les "Casparian strip domain proteins" (CASPs). Cela induit des cadres de Caspary non fonctionnels, contenant de nombreuses interruptions. Les CASPs sont localisés à la membrane plasmique dans un domaine sous-jacent les cadres de Caspary appelé Casparian Strip membrane Domain (CSD). Les interruptions du CSD dans le mutant sgn3, ainsi que la localisation de SGN3 à proximité des CASPs nous font penser à un rôle de SGN3 dans l'élaboration d'un CSD ininterrompu. De plus, SGN3 pourrait avoir un second rôle, agissant en tant que kinase reportant l'intégrité du CSD et induisant la production de lignine et de subérine dans des plantes contenant des cadres de Caspary non fonctionnels. Jusqu'à ce jour, sgn3 est le mutant en notre possession le plus fort et le plus spécifique, ayant un endoderme perméable tout le long de la racine. Pour cette raison, ce mutant est adéquat dans le but de caractériser la physiologie de plantes ayant des cadres de Caspary affectés. De manière surprenante, la croissance de sgn3 est seulement peu affectée. Néanmoins, des processus censés nécessiter des cadres de Caspary fonctionnels, comme le transport de l'eau au travers de la racine, l'homéostasie des nutriments, la tolérance au sel et la résistance à l'excès de certains nutriments sont altérés dans ce mutant. Malgré tout, l'homéostasie de la plupart des nutriments ainsi que la résistance au stress hydrique ne sont pas affectés dans sgn3. De manière surprenante, les altérations de l'ionome de sgn3 sont spécifiques, avec une diminution de potassium et un excès de magnésium. Cela implique un système de compensation établi par la plante dans le but d'éviter la diffusion passive des nutriments en direction du cylindre central. Par exemple, le manque de potassium dans sgn3 augmente la transcription de transporteurs permettant l'absorption de cet élément. De plus, des gènes connus pour être induits en cas de carence en potassium sont surexprimés dans sgn3 et la croissance de ce mutant est sévèrement affectée dans un substrat pauvre en potassium. Ces résultats concernant SGN3 vont, espérons-le, aider à la compréhension du processus de formation des cadres de Caspary au niveau moléculaire. De plus, les expériences de physiologie utilisant sgn3 présentées dans cette thèse devraient nous donner une base pour des expériences futures et nous permettre de comprendre mieux le rôle des cadres de Caspary, et plus particulièrement leur implication dans le transport radial des nutriments au travers de la racine. -- Les plantes terrestres sont des organismes puisant l'eau et les nutriments dont elles ont besoin pour leur croissance dans le sol grâce à leurs racines. De par leur immobilité, elles doivent s'adapter à des sols contenant des quantités variables de nutriments et il leur est crucial de sélectionner ce dont elles ont besoin afin de ne pas s'intoxiquer. Cette sélection est faite grâce à un filtre formé d'un tissu racinaire interne appelé endoderme. L'endoderme fabrique une barrière imperméable entourant chaque cellule appelée "cadre de Caspary". Ces cadres de Caspary empêchent le libre passage des nutriments, permettant un contrôle précis de leur passage. De plus, ils sont censés permettre de résister contre différents stress environnementaux comme la sécheresse, la salinité du sol ou l'excès de nutriments. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans la formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana a permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un de ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR- RLK). Nous montrons dans cette étude que le gène SGN3 est impliqué dans la formation des cadres de Caspary, et que le mutant correspondant sgn3 a des cadres de Caspary interrompus. Ces interruptions rendent l'endoderme perméable, l'empêchant de bloquer le passage des molécules depuis le sol vers le centre de la racine. En utilisant ce mutant, nous avons pu caractériser la physiologie de plantes ayant des cadres de Caspary affectés. Cela a permis de découvrir que le transport de l'eau au travers de la racine était affecté dans le mutant sgn3. De plus, l'accumulation de certains éléments dans les feuilles de ce mutant est altérée. Nous avons également pu montrer une sensibilité de ce mutant à un excès de sel ou de certains nutriments comme le fer et le manganèse.
Resumo:
Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.
Resumo:
To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.
Resumo:
In this work we present the formulas for the calculation of exact three-center electron sharing indices (3c-ESI) and introduce two new approximate expressions for correlated wave functions. The 3c-ESI uses the third-order density, the diagonal of the third-order reduced density matrix, but the approximations suggested in this work only involve natural orbitals and occupancies. In addition, the first calculations of 3c-ESI using Valdemoro's, Nakatsuji's and Mazziotti's approximation for the third-order reduced density matrix are also presented for comparison. Our results on a test set of molecules, including 32 3c-ESI values, prove that the new approximation based on the cubic root of natural occupancies performs the best, yielding absolute errors below 0.07 and an average absolute error of 0.015. Furthemore, this approximation seems to be rather insensitive to the amount of electron correlation present in the system. This newly developed methodology provides a computational inexpensive method to calculate 3c-ESI from correlated wave functions and opens new avenues to approximate high-order reduced density matrices in other contexts, such as the contracted Schrödinger equation and the anti-Hermitian contracted Schrödinger equation
Resumo:
Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1) and plant age. The species were evaluated every 90 days for plant height (PH), crown diameter (CD) and root collar diameter (RCD) (10 cm above the ground), with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH) (1.30 m above the ground). A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.
Resumo:
PURPOSE: In placentas from uncomplicated pregnancies, Hofbauer cells either disappear or become scanty after the fourth to fifth month of gestation. Immunohistochemistry though, reveals that a high percentage of stromal cells belong to Hofbauer cells. The aim of this study was to investigate the changes in morphology and density of Hofbauer cells in placentas from normal and pathological pregnancies. METHODS: Seventy placentas were examined: 16 specimens from normal term pregnancies, 10 from first trimester's miscarriages, 26 from cases diagnosed with chromosomal abnormality of the fetus, and placental tissue specimens complicated with intrauterine growth restriction (eight) or gestational diabetes mellitus (10). A histological study of hematoxylin-eosin (HE) sections was performed and immunohistochemical study was performed using the markers: CD 68, Lysozyme, A1 Antichymotrypsine, CK-7, vimentin, and Ki-67. RESULTS: In normal term pregnancies, HE study revealed Hofbauer cells in 37.5% of cases while immunohistochemistry revealed in 87.5% of cases. In first trimester's miscarriages and in cases with prenatal diagnosis of fetal chromosomal abnormalities, both basic and immunohistochemical study were positive for Hofbauer cells. In pregnancies complicated with intrauterine growth restriction or gestational diabetes mellitus, a positive immunoreaction was observed in 100 and 70% of cases, respectively. CONCLUSIONS: Hofbauer cells are present in placental villi during pregnancy, but with progressively reducing density. The most specific marker for their detection seems to be A1 Antichymotrypsine. It is remarkable that no mitotic activity of Hofbauer cells was noticed in our study, as the marker of cellular multiplication Ki-67 was negative in all examined specimens.