905 resultados para root mean square roughness
Resumo:
Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations. The new methods presented are more accurate than the instrument-calibrated data, achieving accuracies on the order of tenths of a degree root mean square error (RMSE) and mean bias. Effects of localized non-uniformities that violate the assumptions of single-ended calibration data are explored and quantified. Experimental design considerations such as selection of integration times or selection of the length of the reference sections are discussed, and the impacts of these considerations on calibrated temperatures are explored in two case studies.
Resumo:
On-board image guidance, such as cone-beam CT (CBCT) and kV/MV 2D imaging, is essential in many radiation therapy procedures, such as intensity modulated radiotherapy (IMRT) and stereotactic body radiation therapy (SBRT). These imaging techniques provide predominantly anatomical information for treatment planning and target localization. Recently, studies have shown that treatment planning based on functional and molecular information about the tumor and surrounding tissue could potentially improve the effectiveness of radiation therapy. However, current on-board imaging systems are limited in their functional and molecular imaging capability. Single Photon Emission Computed Tomography (SPECT) is a candidate to achieve on-board functional and molecular imaging. Traditional SPECT systems typically take 20 minutes or more for a scan, which is too long for on-board imaging. A robotic multi-pinhole SPECT system was proposed in this dissertation to provide shorter imaging time by using a robotic arm to maneuver the multi-pinhole SPECT system around the patient in position for radiation therapy.
A 49-pinhole collimated SPECT detector and its shielding were designed and simulated in this work using the computer-aided design (CAD) software. The trajectories of robotic arm about the patient, treatment table and gantry in the radiation therapy room and several detector assemblies such as parallel holes, single pinhole and 49 pinholes collimated detector were investigated. The rail mounted system was designed to enable a full range of detector positions and orientations to various crucial treatment sites including head and torso, while avoiding collision with linear accelerator (LINAC), patient table and patient.
An alignment method was developed in this work to calibrate the on-board robotic SPECT to the LINAC coordinate frame and to the coordinate frames of other on-board imaging systems such as CBCT. This alignment method utilizes line sources and one pinhole projection of these line sources. The model consists of multiple alignment parameters which maps line sources in 3-dimensional (3D) space to their 2-dimensional (2D) projections on the SPECT detector. Computer-simulation studies and experimental evaluations were performed as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise and acquisition geometry. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, the six alignment parameters (3 translational and 3 rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by Radon transform, the estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution and detector acquisition geometry. The estimation accuracy was significantly improved by using 4 line sources rather than 3 and also by using thinner line-source projections (obtained by better intrinsic detector resolution). With 5 line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.
Simulation studies were performed to investigate the improvement of imaging sensitivity and accuracy of hot sphere localization for breast imaging of patients in prone position. A 3D XCAT phantom was simulated in the prone position with nine hot spheres of 10 mm diameter added in the left breast. A no-treatment-table case and two commercial prone breast boards, 7 and 24 cm thick, were simulated. Different pinhole focal lengths were assessed for root-mean-square-error (RMSE). The pinhole focal lengths resulting in the lowest RMSE values were 12 cm, 18 cm and 21 cm for no table, thin board, and thick board, respectively. In both no table and thin board cases, all 9 hot spheres were easily visualized above background with 4-minute scans utilizing the 49-pinhole SPECT system while seven of nine hot spheres were visible with the thick board. In comparison with parallel-hole system, our 49-pinhole system shows reduction in noise and bias under these simulation cases. These results correspond to smaller radii of rotation for no-table case and thinner prone board. Similarly, localization accuracy with the 49-pinhole system was significantly better than with the parallel-hole system for both the thin and thick prone boards. Median localization errors for the 49-pinhole system with the thin board were less than 3 mm for 5 of 9 hot spheres, and less than 6 mm for the other 4 hot spheres. Median localization errors of 49-pinhole system with the thick board were less than 4 mm for 5 of 9 hot spheres, and less than 8 mm for the other 4 hot spheres.
Besides prone breast imaging, respiratory-gated region-of-interest (ROI) imaging of lung tumor was also investigated. A simulation study was conducted on the potential of multi-pinhole, region-of-interest (ROI) SPECT to alleviate noise effects associated with respiratory-gated SPECT imaging of the thorax. Two 4D XCAT digital phantoms were constructed, with either a 10 mm or 20 mm diameter tumor added in the right lung. The maximum diaphragm motion was 2 cm (for 10 mm tumor) or 4 cm (for 20 mm tumor) in superior-inferior direction and 1.2 cm in anterior-posterior direction. Projections were simulated with a 4-minute acquisition time (40 seconds per each of 6 gates) using either the ROI SPECT system (49-pinhole) or reference single and dual conventional broad cross-section, parallel-hole collimated SPECT. The SPECT images were reconstructed using OSEM with up to 6 iterations. Images were evaluated as a function of gate by profiles, noise versus bias curves, and a numerical observer performing a forced-choice localization task. Even for the 20 mm tumor, the 49-pinhole imaging ROI was found sufficient to encompass fully usual clinical ranges of diaphragm motion. Averaged over the 6 gates, noise at iteration 6 of 49-pinhole ROI imaging (10.9 µCi/ml) was approximately comparable to noise at iteration 2 of the two dual and single parallel-hole, broad cross-section systems (12.4 µCi/ml and 13.8 µCi/ml, respectively). Corresponding biases were much lower for the 49-pinhole ROI system (3.8 µCi/ml), versus 6.2 µCi/ml and 6.5 µCi/ml for the dual and single parallel-hole systems, respectively. Median localization errors averaged over 6 gates, for the 10 mm and 20 mm tumors respectively, were 1.6 mm and 0.5 mm using the ROI imaging system and 6.6 mm and 2.3 mm using the dual parallel-hole, broad cross-section system. The results demonstrate substantially improved imaging via ROI methods. One important application may be gated imaging of patients in position for radiation therapy.
A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150-L110 robot). An imaging study was performed with a phantom (PET CT Phantom
In conclusion, the proposed on-board robotic SPECT can be aligned to LINAC/CBCT with a single pinhole projection of the line-source phantom. Alignment parameters can be estimated using one pinhole projection of line sources. This alignment method may be important for multi-pinhole SPECT, where relative pinhole alignment may vary during rotation. For single pinhole and multi-pinhole SPECT imaging onboard radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. In simulation studies of prone breast imaging and respiratory-gated lung imaging, the 49-pinhole detector showed better tumor contrast recovery and localization in a 4-minute scan compared to parallel-hole detector. On-board SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.
Resumo:
The AMSR-E satellite data and in-situ data were applied to retrieve sea surface air temperature (Ta) over the Southern Ocean. The in-situ data were obtained from the 24~(th) -26~(th) Chinese Antarctic Expeditions during 2008-2010. First, Ta was used to analyze the relativity with the bright temperature (Tb) from the twelve channels of AMSR-E, and no high relativity was found between Ta and Tb from any of the channels. The highest relativity was 0.38 (with 23.8 GHz). The dataset for the modeling was obtained by using in-situ data to match up with Tb, and two methods were applied to build the retrieval model. In multi-parameters regression method, the Tbs from 12 channels were used to the model and the region was divided into two parts according to the latitude of 50°S. The retrieval results were compared with the in-situ data. The Root Mean Square Error (RMS) and relativity of high latitude zone were 0.96℃and 0.93, respectively. And those of low latitude zone were 1.29 ℃ and 0.96, respectively. Artificial neural network (ANN) method was applied to retrieve Ta.The RMS and relativity were 1.26 ℃ and 0.98, respectively.
Resumo:
In this paper we evaluate whether the assimilation of remotely-sensed optical data into a marine ecosystem model improves the simulation of biogeochemistry in a shelf sea. A localized Ensemble Kalman filter was used to assimilate weekly diffuse light attenuation coefficient data, Kd(443) from SeaWiFs, into an ecosystem model of the western English Channel. The spatial distributions of (unassimilated) surface chlorophyll from satellite, and a multivariate time series of eighteen biogeochemical and optical variables measured in situ at one long-term monitoring site were used to evaluate the system performance for the year 2006. Assimilation reduced the root mean square error and improved the correlation with the assimilated Kd(443) observations, for both the analysis and, to a lesser extent, the forecast estimates, when compared to the reference model simulation. Improvements in the simulation of (unassimilated) ocean colour chlorophyll were less evident, and in some parts of the Channel the simulation of this data deteriorated. The estimation errors for the (unassimilated) in situ data were reduced for most variables with some exceptions, e.g. dissolved nitrogen. Importantly, the assimilation adjusted the balance of ecosystem processes by shifting the simulated food web towards the microbial loop, thus improving the estimation of some properties, e.g. total particulate carbon. Assimilation of Kd(443) outperformed a comparative chlorophyll assimilation experiment, in both the estimation of ocean colour data and in the simulation of independent in situ data. These results are related to relatively low error in Kd(443) data, and because it is a bulk optical property of marine ecosystems. Assimilation of remotely-sensed optical properties is a promising approach to improve the simulation of biogeochemical and optical variables that are relevant for ecosystem functioning and climate change studies.
Resumo:
We used coincident Envisat RA2 and AATSR temperature and wind speed data from 2008/2009 to calculate the global net sea-air flux of dimethyl sulfide (DMS), which we estimate to be 19.6 Tg S a21. Our monthly flux calculations are compared to open ocean eddy correlation measurements of DMS flux from 10 recent cruises, with a root mean square difference of 3.1 lmol m22 day21. In a sensitivity analysis, we varied temperature, salinity, surface wind speed, and aqueous DMS concentration, using fixed global changes as well as CMIP5 model output. The range of DMS flux in future climate scenarios is discussed. The CMIP5 model predicts a reduction in surface wind speed and we estimate that this will decrease the global annual sea-air flux of DMS by 22% over 25 years. Concurrent changes in temperature, salinity, and DMS concentration increase the global flux by much smaller amounts. The net effect of all CMIP5 modelled 25 year predictions was a 19% reduction in global DMS flux. 25 year DMS concentration changes had significant regional effects, some positive (Southern Ocean, North Atlantic, Northwest Pacific) and some negative (isolated regions along the Equator and in the Indian Ocean). Using satellite-detected coverage of coccolithophore blooms, our estimate of their contribution to North Atlantic DMS emissions suggests that the coccolithophores contribute only a small percentage of the North Atlantic annual flux estimate, but may be more important in the summertime and in the northeast Atlantic.
Resumo:
There is ongoing debate as to whether the oligotrophic ocean is predominantly net autotrophic and acts as a CO2 sink, or net heterotrophic and therefore acts as a CO2 source to the atmosphere. This quantification is challenging, both spatially and temporally, due to the sparseness of measurements. There has been a concerted effort to derive accurate estimates of phytoplankton photosynthesis and primary production from satellite data to fill these gaps; however there have been few satellite estimates of net community production (NCP). In this paper, we compare a number of empirical approaches to estimate NCP from satellite data with in vitro measurements of changes in dissolved O2 concentration at 295 stations in the N and S Atlantic Ocean (including the Antarctic), Greenland and Mediterranean Seas. Algorithms based on power laws between NCP and particulate organic carbon production (POC) derived from 14C uptake tend to overestimate NCP at negative values and underestimate at positive values. An algorithm that includes sea surface temperature (SST) in the power function of NCP and 14C POC has the lowest bias and root-mean square error compared with in vitro measured NCP and is the most accurate algorithm for the Atlantic Ocean. Nearly a 13 year time series of NCP was generated using this algorithm with SeaWiFS data to assess changes over time in different regions and in relation to climate variability. The North Atlantic subtropical and tropical Gyres (NATL) were predominantly net autotrophic from 1998 to 2010 except for boreal autumn/winter, suggesting that the northern hemisphere has remained a net sink for CO2 during this period. The South Atlantic subtropical Gyre (SATL) fluctuated from being net autotrophic in austral spring-summer, to net heterotrophic in austral autumn–winter. Recent decadal trends suggest that the SATL is becoming more of a CO2 source. Over the Atlantic basin, the percentage of satellite pixels with negative NCP was 27%, with the largest contributions from the NATL and SATL during boreal and austral autumn–winter, respectively. Variations in NCP in the northern and southern hemispheres were correlated with climate indices. Negative correlations between NCP and the multivariate ENSO index (MEI) occurred in the SATL, which explained up to 60% of the variability in NCP. Similarly there was a negative correlation between NCP and the North Atlantic Oscillation (NAO) in the Southern Sub-Tropical Convergence Zone (SSTC),which explained 90% of the variability. There were also positive correlations with NAO in the Canary Current Coastal Upwelling (CNRY) and Western Tropical Atlantic (WTRA)which explained 80% and 60% of the variability in each province, respectively. MEI and NAO seem to play a role in modifying phases of net autotrophy and heterotrophy in the Atlantic Ocean.
Resumo:
Abstract: Raman spectroscopy has been used for the first time to predict the FA composition of unextracted adipose tissue of pork, beef, lamb, and chicken. It was found that the bulk unsaturation parameters could be predicted successfully [R-2 = 0.97, root mean square error of prediction (RMSEP) = 4.6% of 4 sigma], with cis unsaturation, which accounted for the majority of the unsaturation, giving similar correlations. The combined abundance of all measured PUFA (>= 2 double bonds per chain) was also well predicted with R-2 = 0.97 and RMSEP = 4.0% of 4 sigma. Trans unsaturation was not as well modeled (R-2 = 0.52, RMSEP = 18% of 4 sigma); this reduced prediction ability can be attributed to the low levels of trans FA found in adipose tissue (0.035 times the cis unsaturation level). For the individual FA, the average partial least squares (PLS) regression coefficient of the 18 most abundant FA (relative abundances ranging from 0.1 to 38.6% of the total FA content) was R-2 = 0.73; the average RMSEP = 11.9% of 4 sigma. Regression coefficients and prediction errors for the five most abundant FA were all better than the average value (in some cases as low as RMSEP = 4.7% of 4 sigma). Cross-correlation between the abundances of the minor FA and more abundant acids could be determined by principal component analysis methods, and the resulting groups of correlated compounds were also well-predicted using PLS. The accuracy of the prediction of individual FA was at least as good as other spectroscopic methods, and the extremely straightforward sampling method meant that very rapid analysis of samples at ambient temperature was easily achieved. This work shows that Raman profiling of hundreds of samples per day is easily achievable with an automated sampling system.
Resumo:
In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P<0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.
Resumo:
Mobile ad hoc networking of dismounted combat personnel is expected to play an important role in the future of network-centric operations. High-speed, short-range, soldier-to-soldier wireless communications will be required to relay information on situational awareness, tactical instructions, and covert surveillance related data during special operations reconnaissance and other missions. This article presents some of the work commissioned by the U. K. Ministry of Defence to assess the feasibility of using 60 GHz millimeter-wave smart antenna technology to provide covert communications capable of meeting these stringent networking needs. Recent advances in RF front-end technology, alongside physical layer transmission schemes that could be employed in millimeter-wave soldier-mounted radio, are discussed. The introduction of covert communications between soldiers will require the development of a bespoke directive medium access layer. A number of adjustments to the IEEE 802.11 distribution coordination function that will enable directional communications are suggested. The successful implementation of future smart antenna technologies and direction of arrival-based protocols will be highly dependent on thorough knowledge of transmission channel characteristics prior to deployment. A novel approach to simulating dynamic soldier-to-soldier signal propagation using state-of-the-art animation-based technology developed for computer game design is described, and important channel metrics such as root mean square angle and delay spread for a team of four networked infantry soldiers over a range of indoor and outdoor environments is reported.
Resumo:
The mean velocity and turbulence intensity are the two main inputs to investigate the ship propeller induced seabed scouring resulting from a vessel is manoeuvring within a port where the underkeel clearances are low. More accurate data including the turbulence intensity is now available by using the laser doppler anemometry (LDA) measurement system and computational fluid dynamics (CFD) approach. Turbulence intensity has a loose definition, which is the velocity fluctuation as the root mean square (RMS) referenced to a mean flow velocity. However, the velocity fluctuation and mean velocity can be the overall value includingx, y and z directions or the value of a single component. LDA and CFD results were obtained from two different acquisition systems (Dantec LDA system and Fluent CFD package) and therefore the outputs cannot be compared directly. An effective method is proposed for comparing the turbulence intensity between the experimental measurements and the computational predictions within a ship propeller jet. The flow patterns of turbulence intensity within a ship propeller jet are presented by using the LDA measurements and CFD results from turbulence models of standard k-e, RNG k-e, realizable k–e, standard k–?, SST k–?and Reynolds stresses.
Resumo:
Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(uw)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(uw) < 0.02 m s-1), depending on the location sampled, but declined to below 10% for most locations at higher rms(uw). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(uw) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions.
Resumo:
This study aims to evaluate the use of Varian radiotherapy dynamic treatment log (DynaLog) files to verify IMRT plan delivery as part of a routine quality assurance procedure. Delivery accuracy in terms of machine performance was quantified by multileaf collimator (MLC) position errors and fluence delivery accuracy for patients receiving intensity modulated radiation therapy (IMRT) treatment. The relationship between machine performance and plan complexity, quantified by the modulation complexity score (MCS) was also investigated. Actual MLC positions and delivered fraction of monitor units (MU), recorded every 50 ms during IMRT delivery, were extracted from the DynaLog files. The planned MLC positions and fractional MU were taken from the record and verify system MLC control file. Planned and delivered beam data were compared to determine leaf position errors with and without the overshoot effect. Analysis was also performed on planned and actual fluence maps reconstructed from the MLC control file and delivered treatment log files respectively. This analysis was performed for all treatment fractions for 5 prostate, 5 prostate and pelvic node (PPN) and 5 head and neck (H&N) IMRT plans, totalling 82 IMRT fields in ∼5500 DynaLog files. The root mean square (RMS) leaf position errors without the overshoot effect were 0.09, 0.26, 0.19 mm for the prostate, PPN and H&N plans respectively, which increased to 0.30, 0.39 and 0.30 mm when the overshoot effect was considered. Average errors were not affected by the overshoot effect and were 0.05, 0.13 and 0.17 mm for prostate, PPN and H&N plans respectively. The percentage of pixels passing fluence map gamma analysis at 3%/3 mm was 99.94 ± 0.25%, which reduced to 91.62 ± 11.39% at 1%/1 mm criterion. Leaf position errors, but not gamma passing rate, were directly related to plan complexity as determined by the MCS. Site specific confidence intervals for average leaf position errors were set at -0.03-0.12 mm for prostate and -0.02-0.28 mm for more complex PPN and H&N plans. For all treatment sites confidence intervals for RMS errors with the overshoot was set at 0-0.50 mm and for the percentage of pixels passing a gamma analysis at 1%/1 mm a confidence interval of 68.83% was set also for all treatment sites. This work demonstrates the successful implementation of treatment log files to validate IMRT deliveries and how dynamic log files can diagnose delivery errors not possible with phantom based QC. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.
Resumo:
Intraspecific variation in gamete compatibility among male/female pairs causes variation in the concentration of sperm required to achieve equivalent fertilization levels. Gamete compatibility is therefore potentially an important factor controlling mating success. Many broadcast-spawning marine invertebrates, however, also live in a dynamic environment where hydrodynamic conditions can affect the concentration of sperm reaching eggs during spawning. Thus flow conditions may moderate the effects of gamete compatibility on fertilization. Using the green sea urchin Strongylocentrotus droebachiensis as a model system, we assessed the relative effects of gamete compatibility (the concentration of sperm required to fertilize 50% of the eggs in specific male/female pairs; F50) and the root-mean-square of total velocity (urms; 0.01-0.11 m s(-1)) on fertilization in four locations near a spawning female (water column, wake eddy, substratum, and aboral surface) in both unidirectional and oscillatory flows. Percent fertilization decreased significantly with increasing urms at all locations and both flow regimes. However, although gamete compatibility varied by almost 1.5 orders of magnitude, it was not a significant predictor of fertilization for most combinations of position and flow. The notable exception was a significant effect of gamete compatibility on fertilization on the aboral surface under unidirectional flow. Our results suggest that selection on variation in gamete compatibility may be strongest in eggs fertilized on the aboral surface of sea urchins and that hydrodynamic conditions may add environmental noise to selection outcomes.
Resumo:
Assessment of marine downscaling of global model simulations to the regional scale is a prerequisite for understanding ocean feedback to the atmosphere in regional climate downscaling. Major difficulties arise from the coarse grid resolution of global models, which cannot provide sufficiently accurate boundary values for the regional model. In this study, we first setup a stretched global model (MPIOM) to focus on the North Sea by shifting poles. Second, a regional model (HAMSOM) was performed with higher resolution, while the open boundary values were provided by the stretched global model. In general, the sea surface temperatures (SSTs) in the two experiments are similar. Major SST differences are found in coastal regions (root mean square difference of SST is reaching up to 2°C). The higher sea surface salinity in coastal regions in the global model indicates the general limitation of this global model and its configuration (surface layer thickness is 16 m). By comparison, the advantage of the absence of open lateral boundaries in the global model can be demonstrated, in particular for the transition region between the North Sea and Baltic Sea. On long timescales, the North Atlantic Current (NAC) inflow through the northern boundary correlates well between both model simulations (R~0.9). After downscaling with HAMSOM, the NAC inflow through the northern boundary decreases by ~10%, but the circulation in the Skagerrak is stronger in HAMSOM. The circulation patterns of both models are similar in the northern North Sea. The comparison suggests that the stretched global model system is a suitable tool for long-term free climate model simulations, and the only limitations occur in coastal regions. Regarding the regional studies focusing on the coastal zone, nested regional model can be a helpful alternative.
Resumo:
Chili powder is a globally traded commodity which has been found to be adulterated with Sudan dyes from 2003 onwards. In this study, chili powders were adulterated with varying quantities of Sudan I dye (0.1-5%) and spectra were generated using near infrared reflectance spectroscopy (NIRS) and Raman
spectroscopy (on a spectrometer with a sample compartment modified as part of the study). Chemometrics were applied to the spectral data to produce quantitative and qualitative calibration models and prediction statistics. For the quantitative models coefficients of determination (R2) were found to be
0.891-0.994 depending on which spectral data (NIRS/Raman) was processed, the mathematical algorithm used and the data pre-processing applied. The corresponding values for the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were found to be 0.208-0.851%
and 0.141-0.831% respectively, once again depending on the spectral data and the chemometric treatment applied to the data. Indications are that the NIR spectroscopy based models are superior to the models produced from Raman spectral data based on a comparison of the values of the chemometric
parameters. The limit of detection (LOD) based on analysis of 20 blank chili powders against each calibration model gave 0.25% and 0.88% for the NIR and Raman data, respectively. In addition, adopting a qualitative approach with the spectral data and applying PCA or PLS-DA, it was possible to discriminate
between adulterated chili powders from non-adulterated chili powders.