859 resultados para robust hedging
Resumo:
Feedback design for a second-order control system leads to an eigenstructure assignment problem for a quadratic matrix polynomial. It is desirable that the feedback controller not only assigns specified eigenvalues to the second-order closed loop system but also that the system is robust, or insensitive to perturbations. We derive here new sensitivity measures, or condition numbers, for the eigenvalues of the quadratic matrix polynomial and define a measure of the robustness of the corresponding system. We then show that the robustness of the quadratic inverse eigenvalue problem can be achieved by solving a generalized linear eigenvalue assignment problem subject to structured perturbations. Numerically reliable methods for solving the structured generalized linear problem are developed that take advantage of the special properties of the system in order to minimize the computational work required. In this part of the work we treat the case where the leading coefficient matrix in the quadratic polynomial is nonsingular, which ensures that the polynomial is regular. In a second part, we will examine the case where the open loop matrix polynomial is not necessarily regular.
Resumo:
Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.
Resumo:
A robust pole assignment by linear state feedback is achieved in state-space representation by selecting a feedback which minimises the conditioning of the assigned eigenvalues of the closed-loop system. It is shown here that when this conditioning is minimised, a lower bound on the stability margin in the frequency domain is maximised.
Resumo:
The solution of the pole assignment problem by feedback in singular systems is parameterized and conditions are given which guarantee the regularity and maximal degree of the closed loop pencil. A robustness measure is defined, and numerical procedures are described for selecting the free parameters in the feedback to give optimal robustness.
Resumo:
This paper compares the performance of artificial neural networks (ANNs) with that of the modified Black model in both pricing and hedging Short Sterling options. Using high frequency data, standard and hybrid ANNs are trained to generate option prices. The hybrid ANN is significantly superior to both the modified Black model and the standard ANN in pricing call and put options. Hedge ratios for hedging Short Sterling options positions using Short Sterling futures are produced using the standard and hybrid ANN pricing models, the modified Black model, and also standard and hybrid ANNs trained directly on the hedge ratios. The performance of hedge ratios from ANNs directly trained on actual hedge ratios is significantly superior to those based on a pricing model, and to the modified Black model.
Resumo:
In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.
Resumo:
This paper presents a video surveillance framework that robustly and efficiently detects abandoned objects in surveillance scenes. The framework is based on a novel threat assessment algorithm which combines the concept of ownership with automatic understanding of social relations in order to infer abandonment of objects. Implementation is achieved through development of a logic-based inference engine based on Prolog. Threat detection performance is conducted by testing against a range of datasets describing realistic situations and demonstrates a reduction in the number of false alarms generated. The proposed system represents the approach employed in the EU SUBITO project (Surveillance of Unattended Baggage and the Identification and Tracking of the Owner).
Resumo:
We study the empirical performance of the classical minimum-variance hedging strategy, comparing several econometric models for estimating hedge ratios of crude oil, gasoline and heating oil crack spreads. Given the great variability and large jumps in both spot and futures prices, considerable care is required when processing the relevant data and accounting for the costs of maintaining and re-balancing the hedge position. We find that the variance reduction produced by all models is statistically and economically indistinguishable from the one-for-one “naïve” hedge. However, minimum-variance hedging models, especially those based on GARCH, generate much greater margin and transaction costs than the naïve hedge. Therefore we encourage hedgers to use a naïve hedging strategy on the crack spread bundles now offered by the exchange; this strategy is the cheapest and easiest to implement. Our conclusion contradicts the majority of the existing literature, which favours the implementation of GARCH-based hedging strategies.