883 resultados para renormalisation group theory
Resumo:
Diketopyrrolopyrrole (DPP) based molecular semiconductors have emerged as promising materials for high performance active layers in organic solar cells. It is imperative to comprehend the origin of such a property by investigating the fundamental structure property correlation. In this report we have investigated the role of the donor group in DPP based donor-acceptor- donor (D-A-D) structure to govern the solid state, photophysical and electrochemical properties. We have prepared three derivatives of DPP with varying strengths of the donor groups, such as phenyl (PDPP-Hex), thiophene (TDPP-Hex) and selenophene (SeDPP-Hex). The influence of the donor units on the solid state packing was studied by single crystal X-ray diffraction. The photophysical, electrochemical and density functional theory ( DFT) results were combined to elucidate the structural and electronic properties of three DPP derivatives. We found that these DPP derivatives crystallized in the monoclinic space group P21/c and show herringbone packing in the crystal lattice. The derivatives exhibit weak p-p stacking interactions as two neighboring molecules slip away from each other with varied torsional angles at the donor units. The high torsional angle of 32 degrees ( PDPP-Hex) between the phenyl and lactam ring results in weak intramolecular interactions between the donor and acceptor, while TDPP-Hex and SeDPP-Hex show lower torsional angles of 9 degrees and 12 degrees with a strong overlap between the donor and acceptor units. The photophysical properties reveal that PDPP-Hex exhibits a high Stokes shift of 0.32 eV and SeDPP- Hex shows a high molar absorption co-efficient of 33 600 L mol -1 1 cm -1 1 with a low band gap of similar to 2.2 eV. The electrochemical studies of SeDPP- Hex indicate the pronounced effect of selenium in stabilizing the LUMO energy levels and this further emphasizes the importance of chalcogens in developing new n-type organic semiconductors for optoelectronic devices.
Resumo:
Groups exhibit properties that either are not perceived to exist, or perhaps cannot exist, at the individual level. Such `emergent' properties depend on how individuals interact, both among themselves and with their surroundings. The world of everyday objects consists of material entities. These are, ultimately, groups of elementary particles that organize themselves into atoms and molecules, occupy space, and so on. It turns out that an explanation of even the most commonplace features of this world requires relativistic quantum field theory and the fact that Planck's constant is discrete, not zero. Groups of molecules in solution, in particular polymers ('sols'), can form viscous clusters that behave like elastic solids ('gels'). Sol-gel transitions are examples of cooperative phenomena. Their occurrence is explained by modelling the statistics of inter-unit interactions: the likelihood of either state varies sharply as a critical parameter crosses a threshold value. Group behaviour among cells or organisms is often heritable and therefore can evolve. This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. There is no general agreement on the appropriate explanatory framework for understanding group-level phenomena in biology.
Resumo:
The existence of three centered C=O...H(N)...X-C hydrogen bonds (H-bonds) involving organic fluorine and other halogens in diphenyloxamide derivatives has been explored by NMR spectroscopy and quantum theoretical studies. The three centered H-bond with the participation of a rotating CF3 group and the F...H-N intramolecular hydrogen bonds, a rare observation of its kind in organofluorine compounds, has been detected. It is also unambiguously established by a number of one and two dimensional NMR experiments, such as temperature perturbation, solvent titration, N-15-H-1 HSQC, and F-19-H-1 HOESY, and is also confirmed by theoretical calculations, such as quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and non-covalent interaction (NCI).
Resumo:
We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an ``engineered'' initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.
Resumo:
The foundation of Habermas's argument, a leading critical theorist, lies in the unequal distribution of wealth across society. He states that in an advanced capitalist society, the possibility of a crisis has shifted from the economic and political spheres to the legitimation system. Legitimation crises increase the more government intervenes into the economy (market) and the "simultaneous political enfranchisement of almost the entire adult population" (Holub, 1991, p. 88). The reason for this increase is because policymakers in advanced capitalist democracies are caught between conflicting imperatives: they are expected to serve the interests of their nation as a whole, but they must prop up an economic system that benefits the wealthy at the expense of most workers and the environment. Habermas argues that the driving force in history is an expectation, built into the nature of language, that norms, laws, and institutions will serve the interests of the entire population and not just those of a special group. In his view, policy makers in capitalist societies are having to fend off this expectation by simultaneously correcting some of the inequities of the market, denying that they have control over people's economic circumstances, and defending the market as an equitable allocator of income. (deHaven-Smith, 1988, p. 14). Critical theory suggests that this contradiction will be reflected in Everglades policy by communicative narratives that suppress and conceal tensions between environmental and economic priorities. Habermas’ Legitimation Crisis states that political actors use various symbols, ideologies, narratives, and language to engage the public and avoid a legitimation crisis. These influences not only manipulate the general population into desiring what has been manufactured for them, but also leave them feeling unfulfilled and alienated. Also known as false reconciliation, the public's view of society as rational, and "conductive to human freedom and happiness" is altered to become deeply irrational and an obstacle to the desired freedom and happiness (Finlayson, 2005, p. 5). These obstacles and irrationalities give rise to potential crises in the society. Government's increasing involvement in Everglades under advanced capitalism leads to Habermas's four crises: economic/environmental, rationality, legitimation, and motivation. These crises are occurring simultaneously, work in conjunction with each other, and arise when a principle of organization is challenged by increased production needs (deHaven-Smith, 1988). Habermas states that governments use narratives in an attempt to rationalize, legitimize, obscure, and conceal its actions under advanced capitalism. Although there have been many narratives told throughout the history of the Everglades (such as the Everglades was a wilderness that was valued as a wasteland in its natural state), the most recent narrative, “Everglades Restoration”, is the focus of this paper.(PDF contains 4 pages)
Resumo:
The primary focus of this thesis is on the interplay of descriptive set theory and the ergodic theory of group actions. This incorporates the study of turbulence and Borel reducibility on the one hand, and the theory of orbit equivalence and weak equivalence on the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study measurable graph combinatorial invariants of group actions and employ the ultraproduct construction as a way of constructing various measure preserving actions with desirable properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of residually finite groups, and we prove a conjecture of Kechris by showing that under general hypotheses property MD is inherited by a group from one of its co-amenable subgroups. Chapter 4 is a study of weak equivalence. One of the main results answers a question of Abért and Elek by showing that within any free weak equivalence class the isomorphism relation does not admit classification by countable structures. The proof relies on affirming a conjecture of Ioana by showing that the product of a free action with a Bernoulli shift is weakly equivalent to the original action. Chapter 5 studies the relationship between mixing and freeness properties of measure preserving actions. Chapter 6 studies how approximation properties of ergodic actions and unitary representations are reflected group theoretically and also operator algebraically via a group's reduced C*-algebra. Chapter 7 is an appendix which includes various results on mixing via filters and on Gaussian actions.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
The study of codes, classically motivated by the need to communicate information reliably in the presence of error, has found new life in fields as diverse as network communication, distributed storage of data, and even has connections to the design of linear measurements used in compressive sensing. But in all contexts, a code typically involves exploiting the algebraic or geometric structure underlying an application. In this thesis, we examine several problems in coding theory, and try to gain some insight into the algebraic structure behind them.
The first is the study of the entropy region - the space of all possible vectors of joint entropies which can arise from a set of discrete random variables. Understanding this region is essentially the key to optimizing network codes for a given network. To this end, we employ a group-theoretic method of constructing random variables producing so-called "group-characterizable" entropy vectors, which are capable of approximating any point in the entropy region. We show how small groups can be used to produce entropy vectors which violate the Ingleton inequality, a fundamental bound on entropy vectors arising from the random variables involved in linear network codes. We discuss the suitability of these groups to design codes for networks which could potentially outperform linear coding.
The second topic we discuss is the design of frames with low coherence, closely related to finding spherical codes in which the codewords are unit vectors spaced out around the unit sphere so as to minimize the magnitudes of their mutual inner products. We show how to build frames by selecting a cleverly chosen set of representations of a finite group to produce a "group code" as described by Slepian decades ago. We go on to reinterpret our method as selecting a subset of rows of a group Fourier matrix, allowing us to study and bound our frames' coherences using character theory. We discuss the usefulness of our frames in sparse signal recovery using linear measurements.
The final problem we investigate is that of coding with constraints, most recently motivated by the demand for ways to encode large amounts of data using error-correcting codes so that any small loss can be recovered from a small set of surviving data. Most often, this involves using a systematic linear error-correcting code in which each parity symbol is constrained to be a function of some subset of the message symbols. We derive bounds on the minimum distance of such a code based on its constraints, and characterize when these bounds can be achieved using subcodes of Reed-Solomon codes.
Resumo:
A general definition of interpreted formal language is presented. The notion “is a part of" is formally developed and models of the resulting part theory are used as universes of discourse of the formal languages. It is shown that certain Boolean algebras are models of part theory.
With this development, the structure imposed upon the universe of discourse by a formal language is characterized by a group of automorphisms of the model of part theory. If the model of part theory is thought of as a static world, the automorphisms become the changes which take place in the world. Using this formalism, we discuss a notion of abstraction and the concept of definability. A Galois connection between the groups characterizing formal languages and a language-like closure over the groups is determined.
It is shown that a set theory can be developed within models of part theory such that certain strong formal languages can be said to determine their own set theory. This development is such that for a given formal language whose universe of discourse is a model of part theory, a set theory can be imbedded as a submodel of part theory so that the formal language has parts which are sets as its discursive entities.
Resumo:
We develop a group-theoretical analysis of slow feature analysis for the case where the input data are generated by applying a set of continuous transformations to static templates. As an application of the theory, we analytically derive nonlinear visual receptive fields and show that their optimal stimuli, as well as the orientation and frequency tuning, are in good agreement with previous simulations of complex cells in primary visual cortex (Berkes and Wiskott, 2005). The theory suggests that side and end stopping can be interpreted as a weak breaking of translation invariance. Direction selectivity is also discussed. © 2011 Massachusetts Institute of Technology.
Resumo:
This article contains a review of modal stability theory. It covers local stability analysis of parallel flows including temporal stability, spatial stability, phase velocity, group velocity, spatio-temporal stability, the linearized Navier-Stokes equations, the Orr-Sommerfeld equation, the Rayleigh equation, the Briggs-Bers criterion, Poiseuille flow, free shear flows, and secondary modal instability. It also covers the parabolized stability equation (PSE), temporal and spatial biglobal theory, 2D eigenvalue problems, 3D eigenvalue problems, spectral collocation methods, and other numerical solution methods. Computer codes are provided for tutorials described in the article. These tutorials cover the main topics of the article and can be adapted to form the basis of research codes. Copyright © 2014 by ASME.
Resumo:
Biomimetic pattern recogntion (BPR), which is based on "cognition" instead of "classification", is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC), which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the "similarity" among homologous group members, rather than "division" in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.
Resumo:
Using the response formula of the photonic crystals and the Bloch equations, the lasing threshold in arbitrary 2D photonic crystals was obtained by an investigation of steady-state laser behavior. The lasing threshold is expressed by the population inversion. It shows that the population inversion threshold is proportional to the second order of the group velocity, and to the relaxation coefficient. (c) 2004 Elsevier B.V. All rights reserved.