887 resultados para receptive discrimination
Resumo:
Despite ample research into the language skills of children with specific reading disorder no studies so far have investigated whether there may be a difference between expressive and receptive language skills in this population. Yet, neuro-anatomical models would predict that children who have specific reading disorder which is not associated with movement or attention difficulties, would have lower receptive language skills than expressive. This study investigates the difference between expressive and receptive language skills in a sample of 17 children with specific reading difficulty aged between 7 and 12 years. They were administered a battery of two receptive and two expressive language measures. The results showed that as the neuro-anatomical model would predict, the children scored significantly lower on tests of receptive than on tests of expressive language skills.
Resumo:
Two experiments are described which explore the relationship between parental reports of infants' receptive vocabularies at 1; 6 (Experiment 1a) or 1-3, 1;6 and 1;9 (Experiment 1b) and the comprehension infants demonstrated in a preferential looking task. The instrument used was the Oxford CD1, a British English adaptation of the MacArthur-Bates CD1 (Words & Gestures). Infants were shown pairs of images of familiar objects, either both name-known or both name-unknown according to their parent's responses on the CD1. At all ages, and on both name-known and name-unknown trials, preference for the target image increased significantly from baseline when infants heard the target's label. This discrepancy suggests that parental report underestimates infants' word knowledge.
Resumo:
The visuospatial perceptual abilities of individuals with Williams syndrome (WS) were investigated in two experiments. Experiment I measured the ability of participants to discriminate between oblique and between nonoblique orientations. Individuals with WS showed a smaller effect of obliqueness in response time, when compared to controls matched for nonverbal mental age. Experiment 2 investigated the possibility that this deviant pattern of orientation discrimination accounts for the poor ability to perform mental rotation in WS (Farran, Jarrold, & Gathercole, 2001). A size transformation task was employed, which shares the image transformation requirements of mental rotation, but not the orientation discrimination demands. Individuals with WS performed at the same level as controls. The results suggest a deviance at the perceptual level in WS, in processing orientation, which fractionates from the ability to mentally transform images.
Resumo:
Perirhinal cortex in monkeys has been thought to be involved in visual associative learning. The authors examined rats' ability to make associations between visual stimuli in a visual secondary reinforcement task. Rats learned 2-choice visual discriminations for secondary visual reinforcement. They showed significant learning of discriminations before any primary reinforcement. Following bilateral perirhinal cortex lesions, rats continued to learn visual discriminations for visual secondary reinforcement at the same rate as before surgery. Thus, this study does not support a critical role of perirhinal cortex in learning for visual secondary reinforcement. Contrasting this result with other positive results, the authors suggest that the role of perirhinal cortex is in "within-object" associations and that it plays a much lesser role in stimulus-stimulus associations between objects.
Resumo:
In this paper, an improved stochastic discrimination (SD) is introduced to reduce the error rate of the standard SD in the context of multi-class classification problem. The learning procedure of the improved SD consists of two stages. In the first stage, a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. In the second stage, the standard SD is modified by (i) restricting sampling in the important space; and (ii) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but smaller variance than that of standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples axe provided to demonstrate the effectiveness of the proposed improved SD.
Resumo:
In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.
Resumo:
Stochastic discrimination (SD) depends on a discriminant function for classification. In this paper, an improved SD is introduced to reduce the error rate of the standard SD in the context of a two-class classification problem. The learning procedure of the improved SD consists of two stages. Initially a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. Then the standard SD is modified by 1) restricting sampling in the important space, and 2) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but with a smaller variance than that of the standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples are provided to demonstrate the effectiveness of the proposed improved SD.