901 resultados para radius of curvature measurement
Resumo:
Both absolute molecular weight and molecular sizes (radius of gyration and hydrodynamic radius) of a vinyl-type polynorbornene eluting from size-exclusion chromatography columns were determined by combined with a static and dynamic laser light scattering detector. The hydrodynamic radius of polymer fraction eluting from size-exclusion chromatography columns was obtained from dynamic laser light scattering measurements at only a single angle of 900 by introducing a correction factor. According to the scaling relationship between molecular sizes and molecular weight and the ratio between radius of gyration and hydrodynamic radius, the vinyl-type polynorbornene took a random coil conformation in 1,2,4-trichlorobenzene at 150 degreesC.
Resumo:
A key element in the rational design of hybrid organic-inorganic nanostructures, is control of surfactant packing and adsorption onto the inorganic phase in crystal growth and assembly. In layered single crystal nanofibers and bilayered 2D nanosheets of vanadium oxide, we show how the chemisorption of preferred densities of surfactant molecules can direct formation of ordered, curved layers. The atom-scale features of the structures are described using molecular dynamics simulations that quantify surfactant packing effects and confirm the preference for a density of 5 dodecanethiol molecules per 8 vanadium attachment sites in the synthesised structures. This assembly maintains a remarkably well ordered interlayer spacing, even when curved. The assemblies of interdigitated organic bilayers on V2O5 are shown to be sufficiently flexible to tolerate curvature while maintaining a constant interlayer distance without rupture, delamination or cleavage. The accommodation of curvature and invariant structural integrity points to a beneficial role for oxide-directed organic film packing effects in layered architectures such as stacked nanofibers and hybrid 2D nanosheet systems.
Resumo:
For optimal solutions in health care, decision makers inevitably must evaluate trade-offs, which call for multi-attribute valuation methods. Researchers have proposed using best-worst scaling (BWS) methods which seek to extract information from respondents by asking them to identify the best and worst items in each choice set. While a companion paper describes the different types of BWS, application and their advantages and downsides, this contribution expounds their relationships with microeconomic theory, which also have implications for statistical inference. This article devotes to the microeconomic foundations of preference measurement, also addressing issues such as scale invariance and scale heterogeneity. Furthermore the paper discusses the basics of preference measurement using rating, ranking and stated choice data in the light of the findings of the preceding section. Moreover the paper gives an introduction to the use of stated choice data and juxtaposes BWS with the microeconomic foundations.
Resumo:
The photo-pump strengths of both the ((3 (d) over bar(4))(0)(3d(6))(0))(0)-(((3 (d) over bar(3))(3/2)(3d(6))(0))(3/2)(5 (f) over bar)(5/2))(1) and the ((3 (d) over bar(4))(0)(3d(6))0)0-(((3 (d) over bar(4))(0)(3d(5))(5/2))(5/2)(5f)(7/2))(1) transitions in Ni-like Sm34+ have been measured to be 2.0 x 10(-4) and 2.4 x 10(-4) photons/mode respectively. The implications of the measurement are briefly discussed in a comparison of the merits of automatically line matched photo-pump scheme to those of the collisional excitation Ni-like Sm+34 scheme.
Resumo:
Policy-based network management (PBNM) paradigms provide an effective tool for end-to-end resource
management in converged next generation networks by enabling unified, adaptive and scalable solutions
that integrate and co-ordinate diverse resource management mechanisms associated with heterogeneous
access technologies. In our project, a PBNM framework for end-to-end QoS management in converged
networks is being developed. The framework consists of distributed functional entities managed within a
policy-based infrastructure to provide QoS and resource management in converged networks. Within any
QoS control framework, an effective admission control scheme is essential for maintaining the QoS of
flows present in the network. Measurement based admission control (MBAC) and parameter basedadmission control (PBAC) are two commonly used approaches. This paper presents the implementationand analysis of various measurement-based admission control schemes developed within a Java-based
prototype of our policy-based framework. The evaluation is made with real traffic flows on a Linux-based experimental testbed where the current prototype is deployed. Our results show that unlike with classic MBAC or PBAC only schemes, a hybrid approach that combines both methods can simultaneously result in improved admission control and network utilization efficiency
Resumo:
PURPOSE: To study the accuracy and acceptability of intraocular pressure (IOP) measurement by the pressure phosphene tonometer, non-contact tonometer, and Goldmann tonometer in children. METHODS: Fifty children (5 to 14 years old) participated in this prospective comparative study. IOP was measured with the pressure phosphene tonometer, non-contact tonometer, and Goldmann tonometer by three different examiners who were masked to the results. The children were also asked to grade the degree of discomfort from 0 to 5 (0 = no discomfort; 5 = most discomfort). RESULTS: The mean IOPs measured by the Goldmann tonometer, pressure phosphene tonometer, and non-contact tonometer were 15.9 mm Hg (standard deviation [SD]: = 5.5 mm Hg; range: 10 to 36 mm Hg), 16.0 mm Hg (SD: 2.9 mm Hg; range: 12 to 25 mm Hg), and 15.7 mm Hg (SD = 5.1 mm Hg; range: 8 to 32 mm Hg), respectively (P = .722). The mean difference between pressure phosphene tonometer and Goldmann tonometer readings was 2.9 mm Hg and that between non-contact tonometer and Goldmann tonometer readings was 2.1 mm Hg. The 95% confidence interval of the mean difference between pressure phosphene tonometer and Goldmann tonometer readings was -1.07 and 1.19, and that between non-contact tonometer and Goldmann tonometer readings was -1.07 and 0.53. The mean discomfort ratings for the pressure phosphene tonometer, non-contact tonometer, and Goldmann tonometer were 0.6, 2.0, and 2.3, respectively (P < .001). CONCLUSION: Although the pressure phosphene tonometer was less accurate than the non-contact tonometer compared with Goldmann tonometer, it gave a reasonably close estimate and had a high specificity of raised IOP. In addition, measurement by the pressure phosphene tonometer is most acceptable to children. The pressure phosphene tonometer can be considered as an alternative method of IOP measurement in children.
Resumo:
PURPOSE: Recent studies report that increased corneal edema because of contact lens wear under closed lids is associated with elevated Goldmann intraocular pressure (GAT IOP). We sought to assess whether the impact of postoperative corneal edema on GAT IOP would be similar and to determine the differential effect of different amounts of edema. METHODS: The setting is a tertiary level cataract clinic in Shantou, China. Pre- and postoperative (day 1) GAT IOP, central corneal thickness (CCT), corneal hysteresis, corneal resistance factor, and radius of corneal curvature were measured for consecutive patients undergoing phacoemulsification surgery by 2 experienced surgeons. Corneal edema was calculated as the percentage increase in CCT. RESULTS: Among 136 subjects (mean age, 62.5 ± 15.4 years; 53.7% women), the mean increase in CCT was 10.3% postoperatively. Greater corneal edema was associated with lower GAT IOP in unadjusted analyses (P < 0.03) and in linear regression models (P < 0.01). In the model, higher corneal resistance factor (P < 0.001), lower corneal hysteresis (P < 0.001), and steeper radius of corneal curvature (P < 0.001) were associated with higher GAT IOP. Among subjects with edema < the median, edema was associated with lower GAT IOP (P = 0.004), whereas among those with edema ≥ the median, edema was not associated with GAT IOP. An increase in CCT of 7% was associated with an 8 mm Hg underestimation of GAT IOP in our models. CONCLUSIONS: The effect of postoperative edema on GAT IOP seems to be the opposite of contact lens-induced edema. The magnitude of the effect is potentially relevant to patient management.
Resumo:
Introduction The critical challenge of determining the correct level and skill-mix of nursing staff required to deliver safe and effective healthcare has become an international concern. It is recommended that evidence-based staffing decisions are central to the development of future workforce plans. Workforce planning in mental health and learning disability nursing is largely under-researched with few tools available to aid the development of evidence-based staffing levels in these environments. Aim It was the aim of this study to explore the experience of staff using the Safer Nursing Care Tool (SNCT) and the Mental Health and Learning Disability Workload Tool (MHLDWT) in mental health and learning disability environments. Method Following a 4-week trial period of both tools a survey was distributed via Qualtrics on-line survey software to staff members who used the tools during this time. Results The results of the survey revealed that the tools were considered a useful resource to aid staffing decisions; however specific criticisms were highlighted regarding their suitability to psychiatric intensive care units (PICU) and learning disability wards. Discussion This study highlights that further development of workload measurement tools is required to support the implementation of effective workforce planning strategies within mental health and learning disability services. Implications for Practice With increasing fiscal pressures the need to provide cost-effective care is paramount within NHS services. Evidence-based workforce planning is therefore necessary to ensure that appropriate levels of staff are determined. This is of particular importance within mental health and learning disability services due to the reduction in the number of available beds and an increasing focus on purposeful admission and discharge.
Resumo:
This paper analyzes the measurement of the diversity of sets based on the dissimilarity of the objects contained in the set. We discuss axiomatic approaches to diversity measurement and examine the considerations underlying the application of specific measures. Our focus is on descriptive issues: rather than assuming a specific ethical position or restricting attention to properties that are appealing in specific applications, we address the foundations of the measurement issue as such in the context of diversity.
Resumo:
Materials belonging to the family of manganites are technologically important since they exhibit colossal magneto resistance. A proper understanding of the transport properties is very vital in tailoring the properties. A heavy rare earth doped manganite like Gd0·7Sr0·3MnO3 is purported to be exhibiting unusual properties because of smaller ionic radius of Gd. Gd0·7Sr0·3MnO3 is prepared by a wet solid state reaction method. The conduction mechanism in such a compound has been elucidated by subjecting the material to low temperature d.c. conductivity measurement. It has been found that the low band width material follows a variable range hopping (VRH) model followed by a small polaron hopping (SPH) model. The results are presented here
Resumo:
In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes
Resumo:
Models of windblown pollen or spore movement are required to predict gene flow from genetically modified (GM) crops and the spread of fungal diseases. We suggest a simple form for a function describing the distance moved by a pollen grain or fungal spore, for use in generic models of dispersal. The function has power-law behaviour over sub-continental distances. We show that air-borne dispersal of rapeseed pollen in two experiments was inconsistent with an exponential model, but was fitted by power-law models, implying a large contribution from distant fields to the catches observed. After allowance for this 'background' by applying Fourier transforms to deconvolve the mixture of distant and local sources, the data were best fit by power-laws with exponents between 1.5 and 2. We also demonstrate that for a simple model of area sources, the median dispersal distance is a function of field radius and that measurement from the source edge can be misleading. Using an inverse-square dispersal distribution deduced from the experimental data and the distribution of rapeseed fields deduced by remote sensing, we successfully predict observed rapeseed pollen density in the city centres of Derby and Leicester (UK).
Resumo:
Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences the uncertainty in determining the formation temperature is provided. We demonstrate that the nominal homogenisation temperature of a single inclusion can be determined with an accuracy of ±0.25 °C, if the volume of the inclusion is larger than 105 μm3. With this method, we could measure in a proof-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 °C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 °C, calculated from actual measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 °C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 °C.